MHH-Forscher finden "Schalter" von Stammzellen

Wissenschaftler der Medizinischen Hochschule Hannover (MHH) haben gemeinsam mit portugiesischen Kollegen die Stammzell-Forschung des blutbildenden Systems vorangetrieben. Dank ihrer Arbeit, bei der sie die genetischen Grundlagen der Regeneration der Stamzellen erforschten, ergeben sich neue Angriffspunkte für die Entwicklung von Medikamenten oder gentherapeutischen Eingriffen.

Die Arbeit mit dem Titel „HOXB4's Fahrplan zur Stammzellexpansion“ ist jetzt in der Online-Ausgabe der Fachzeitschrift „Proceedings of the National Academy of Sciences of the United States of America“ veröffentlicht worden (http://www.pnas.org/cgi/content/full/104/43/16952).

Vorstufe aller Blutzellen sind adulte Stammzellen des blutbildenden Systems, die so genannten hämatopoetischen Stammzellen. Diese Stammzellen können sich entweder in reife Blutzellen differenzieren oder sich ständig selbst erneuern. Sie sind damit die Garanten der lebenslangen Blutbildung. Welchen Weg die Stammzellen einschlagen, hängt zum einen von der Aktivität bestimmter Gene in den Stammzellen selbst ab; zum anderen wird die Entscheidung gesteuert durch unterschiedliche Signale, die verschiedene Zellen in ihrer unmittelbaren Umgebung aussenden. Bisher sind nur wenige Gene bekannt, die wesentlich an der Regulation der Selbsterneuerung der blutbildenden Stammzellen beteiligt sind. Eines dieser Gene ist HOXB4 aus der so genannten Homeobox-Genfamilie. Genetisch modifizierte, veränderte Blutstammzellen der Maus mit erhöhter HOXB4-Dosis schlagen bevorzugt den Weg der Selbsterneuerung ein.

Dr. Bernhard Schiedlmeier und Dr. Hannes Klump aus der Abteilung Experimentelle Hämatologie der MHH ist es nun in Kooperation mit Wissenschaftlern der Arbeitsgruppe von Dr. Moises Mallo am Instituto Gulbenkian de Ciencia (Portugal) gelungen, erste Einblicke in die molekularen Mechanismen der Regeneration von Stammzellen zu erhalten, die vom HOXB4-Protein vermittelt werden.

Die Forscher konnten molekulare Schaltstellen identifizieren, über die das HOXB4-Protein wirkt. Dazu analysierten sie, welche Regenerationssignale von HOXB4 beeinflusst werden. Daraus ergeben sich Angriffspunkte für die Entwicklung von Medikamenten oder gentherapeutischer Eingriffe, um die Regeneration von Blutstammzellen klinisch nutzbar zu machen. „Das könnte für Patienten mit angeborenen oder erworbenen Störungen der Blutbildung von besonderem Interesse sein, weil gegenwärtig verfügbare Alternativen suboptimal oder sogar potenziell toxisch sind“, sagt Professor Dr. Christopher Baum, Leiter der Abteilung Experimentelle Hämatologie der MHH.

Die Arbeit wurde mit einer Projektförderung der Deutschen Krebshilfe und durch das DFG-geförderte Exzellenzcluster Rebirth der MHH finanziert.

Weitere Informationen erhalten Sie bei Dr. Bernhard Schiedlmeier, schiedlmeier.bernhard@mh-hannover.de, Telefon (0511) 532-9590.

Media Contact

Stefan Zorn idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer