Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MHH-Forscher finden "Schalter" von Stammzellen

01.11.2007
Eine genetische Grundlage der Selbsterneuerung des blutbildenden Systems entschlüsselt

Wissenschaftler der Medizinischen Hochschule Hannover (MHH) haben gemeinsam mit portugiesischen Kollegen die Stammzell-Forschung des blutbildenden Systems vorangetrieben. Dank ihrer Arbeit, bei der sie die genetischen Grundlagen der Regeneration der Stamzellen erforschten, ergeben sich neue Angriffspunkte für die Entwicklung von Medikamenten oder gentherapeutischen Eingriffen.

Die Arbeit mit dem Titel "HOXB4's Fahrplan zur Stammzellexpansion" ist jetzt in der Online-Ausgabe der Fachzeitschrift "Proceedings of the National Academy of Sciences of the United States of America" veröffentlicht worden (http://www.pnas.org/cgi/content/full/104/43/16952).

Vorstufe aller Blutzellen sind adulte Stammzellen des blutbildenden Systems, die so genannten hämatopoetischen Stammzellen. Diese Stammzellen können sich entweder in reife Blutzellen differenzieren oder sich ständig selbst erneuern. Sie sind damit die Garanten der lebenslangen Blutbildung. Welchen Weg die Stammzellen einschlagen, hängt zum einen von der Aktivität bestimmter Gene in den Stammzellen selbst ab; zum anderen wird die Entscheidung gesteuert durch unterschiedliche Signale, die verschiedene Zellen in ihrer unmittelbaren Umgebung aussenden. Bisher sind nur wenige Gene bekannt, die wesentlich an der Regulation der Selbsterneuerung der blutbildenden Stammzellen beteiligt sind. Eines dieser Gene ist HOXB4 aus der so genannten Homeobox-Genfamilie. Genetisch modifizierte, veränderte Blutstammzellen der Maus mit erhöhter HOXB4-Dosis schlagen bevorzugt den Weg der Selbsterneuerung ein.

Dr. Bernhard Schiedlmeier und Dr. Hannes Klump aus der Abteilung Experimentelle Hämatologie der MHH ist es nun in Kooperation mit Wissenschaftlern der Arbeitsgruppe von Dr. Moises Mallo am Instituto Gulbenkian de Ciencia (Portugal) gelungen, erste Einblicke in die molekularen Mechanismen der Regeneration von Stammzellen zu erhalten, die vom HOXB4-Protein vermittelt werden.

Die Forscher konnten molekulare Schaltstellen identifizieren, über die das HOXB4-Protein wirkt. Dazu analysierten sie, welche Regenerationssignale von HOXB4 beeinflusst werden. Daraus ergeben sich Angriffspunkte für die Entwicklung von Medikamenten oder gentherapeutischer Eingriffe, um die Regeneration von Blutstammzellen klinisch nutzbar zu machen. "Das könnte für Patienten mit angeborenen oder erworbenen Störungen der Blutbildung von besonderem Interesse sein, weil gegenwärtig verfügbare Alternativen suboptimal oder sogar potenziell toxisch sind", sagt Professor Dr. Christopher Baum, Leiter der Abteilung Experimentelle Hämatologie der MHH.

Die Arbeit wurde mit einer Projektförderung der Deutschen Krebshilfe und durch das DFG-geförderte Exzellenzcluster Rebirth der MHH finanziert.

Weitere Informationen erhalten Sie bei Dr. Bernhard Schiedlmeier, schiedlmeier.bernhard@mh-hannover.de, Telefon (0511) 532-9590.

Stefan Zorn | idw
Weitere Informationen:
http://www.pnas.org/cgi/content/full/104/43/16952
http://www.mh-hannover.de/

Weitere Berichte zu: MHH Medikament Regeneration Selbsterneuerung Stammzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie