Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Wächter der Chromosomen-Aufteilung

30.10.2007
Chromosomen werden vor der Zellteilung verdoppelt, um dann exakt auf die entstehenden Tochterzellen aufgeteilt zu werden. Ein wichtiger Regulator dieser Chromosomen-Separation ist der "Chromosomale Passenger Complex", ein Protein-Komplex, der in der aktuellen Krebs- und Zellteilungsforschung eine zentrale Rolle spielt.

Wissenschaftler am Max-Planck-Institut für Biochemie in Martinsried und am "European Molecular Biology Laboratory", Heidelberg, ist jetzt die Aufklärung der Struktur des zentralen Komplexes gelungen. In der aktuellen Ausgabe der Fachzeitschrift "Cell" beschreiben sie die molekularen Details der vier Untereinheiten und ziehen erste Rückschlüsse auf ihre Funktion (CELL, 19. Oktober 2007).


Struktur des "Chromosomalen Passenger Complex". Die drei zentralen Komponenten binden als Monomere dicht aneinander: Borealin (rot), INCENP (grün) und Survivin (blau). Bild: Max-Planck-Institut für Biochemie/U.Klein


Borealin ist ein essentieller Bestandteil des chomosomalen passenger complexes. Zellen, die normales Borealin synthetisieren, teilen sich fehlerfrei (links). Zellen, die eine veränderte Form des Borealin Proteins aufweisen, welches nicht mehr im "Chromosomalen Passenger Complex" gebunden ist, können keine Zellteilung mehr durchführen (gekennzeichnet durch den Pfeil, rechts). Blau: DNA, rot: Spindel, grün: Borealin.
Bild:Max-Planck-Institut für Biochemie/A. A.Jeyaprakash

Am Anfang steht immer eine Zelle - bei Mensch oder Wurm. Erst durch die Zellteilung oder "Zytokinese", ein Wunderwerk der Natur, wird die Vermehrung zu einem vielzelligen Organismus möglich. Eine menschliche Zelle erstellt vor ihrer Teilung während der Mitose identische Kopien der 46 Chromosomen, sodass die neuen Tochterzellen einen kompletten Satz der genetischen Information erhalten. Werden die Chromosomen bei der Zellteilung ungleich verteilt, können Krebs oder schwere genetische Erkrankungen entstehen.

Eine zentrale Rolle bei der richtigen Aufteilung der Chromosomen spielt der so genannte "Chromosomale Passenger Complex" (CPC). Dieser Protein-Komplex bindet bei der Zellteilung zunächst an den zentralen Ankerpunkt (Centrosom) der Chromosomen und später an die zentralen Spindelfasern, welche die Chromosomen bei der Aufteilung auf die Tochterzellen auseinander ziehen. Bisher war bekannt, dass der Wächter der Zellteilung aus vier Komponenten besteht - INCENP, Survivin, Borealin und Aurora A -, die nur gemeinsam zum Erfolg der korrekten Chromosomen-Aufteilung führen. Um die Kooperation dieser Komponenten zu verstehen und detaillierter untersuchen zu können, muss ihre Molekül-Struktur betrachtet werden. Wissenschaftlern des Max-Planck-Instituts für Biochemie und des "European Molecular Biology Laboratory" (EMBL) ist es jetzt gelungen, die zentralen Strukturen der Untereinheiten des Chromosomen-Transporters aufzuklären.

Die Feinregulation der Chromosomen-Aufteilung

Die Struktur- und Zellbiologen zeigen, welche Molekül-Abschnitte notwendig sind, damit der Transport-Service der Chromosomen funktioniert und die Zellteilung korrekt abläuft. Mit der Kristallisation und Röntgenstruktur-Analyse des CPC aus Bakterien E. coli konnte Arockia Jeyaprakash am EMBL die Struktur aufklären. Der Zellbiologe Ulf Klein erzeugte anschließend Mutanten in Hefezellen und menschlichen HeLa-Zellen, bei denen Teile der für CPC verantwortlichen Gene ausgeschaltet wurden. Damit konnte er exakte Aussagen machen, welche Aminosäuren für die Funktion des CPC und damit für die korrekte Zellteilung unbedingt notwendig sind.

Für die Erforschung der Zellteilung ist die Arbeit von Jeyaprakash und Klein ein wesentlicher Beitrag, um die Feinregulation der Chromosomen-Aufteilung bei der Zellteilung (Mitose) zu verstehen. So konnten sie die bisherige Lehrmeinung widerlegen, dass die vier Proteine INCENP, Survivin, Borealin und Aurora B selbstständige Regulatoren der Zellteilung sind. Die vier Proteine bilden eine Einheit, bei der helikale Teilbereiche der Passenger-Proteine sehr eng miteinander verbunden sind und mehrere Kontaktstellen zwischen den Aminosäuren bestehen (Abb. 1). "Wir waren sehr über die enge Verzahnung der Kooperationspartner des 'Chromosomalen Passenger Complexes' überrascht. Wir verstehen jetzt, dass durch das Fehlen eines Partners die gesamte Struktur nicht mehr aufrecht erhalten werden kann und damit die Bindung des CPC an die Mitose-Spindel unmöglich wird", sagt Ulf Klein, der die Studie im Rahmen seiner Doktorarbeit durchführte.

Geeignetes Zielmolekül für Krebstherapeutika

Die Wissenschaftler fanden darüber hinaus heraus, dass Survivin, das in der separaten Kristallstruktur des Komplexes ein Doppel-Molekül (Dimer) ist, im gesamten chromosomalen Komplex nur als einfaches Molekül vorkommt und das zweite Passenger-Protein Borealin stattdessen in einer Art Mimikry an das vorhandene Einzelmolekül bindet. Hier können die Martinsrieder und Heidelberger Wissenschaftler die Diskussion um die Rolle von Survivin ebenfalls beilegen. Bisher hatten Studien zur Funktion von Survivin gezeigt, dass es unbedingt im Zytoplasma der Zellen als Dimer (Doppelmolekül) vorhanden sein muss, um dem Zelltod (Apoptose) entgegenzuwirken. Jeyaprakesh konnte jetzt zeigen, dass es als Monomer (Einzelmolekül) ein wichtiger Regulator der Zellteilung ist und deshalb auch ein geeignetes Zielmolekül für Krebstherapeutika (Abb. 2).

Der "Chromosomale Passenger Complex" wandert während der Zellteilung von den so genannten Centromeren, den Einschnürungsstellen der Chromosomen, zu den Spindelfasern und trägt so zur Separation der Chromosomen bei. Die jetzt bekannte Struktur eröffnet der Zellteilungs-Forschung die Möglichkeit, die Kooperation mit weiteren Bindungspartnern noch detaillierter zu verstehen.

Da Fehler der Chromosomen-Aufteilung während der Zytokinese häufig auch Ursachen für verschiedene Krebsformen sind, ist die Kenntnis der Struktur des zentralen Regulators natürlich auch wesentlich für die Entwicklung von Therapeutika, die die Teilung von Tumorzellen hemmen bzw. deren Zelltod wieder aktivieren können.

Arockia Jeyaprakash arbeitet seit einigen Wochen in der Abteilung Zelluläre Strukturbiologie unter Leitung von Dr. Elena Conti, der neuen Direktorin am Max-Planck-Institut für Biochemie in Martinsried. Elena Conti wurde 2006 vom EMBL in die Max-Planck-Gesellschaft berufen und hat vor einigen Wochen ihre Arbeit in Martinsried aufgenommen. Die vorliegende Arbeit ist eine Kooperation mit der seit längerem am MPI etablierten Abteilung Zellbiologie unter Leitung von Professor Erich Nigg.

Weitere Informationen:
http://www.biochem.mpg.de/conti - Webpage Abteilung "Strukturelle Zellbiologie" (Conti)
http://www.biochem.mpg.de/nigg - Webpage Abteilung "Zellbiologie" (Nigg)
http://www.mpg.de - Webpage der Max-Planck-Gesellschaft
http://www.embl.org - Webpage European Molecular Biology Laboratory (EMBL)

Eva-Maria Diehl | idw
Weitere Informationen:
http://www.biochem.mpg.de/

Weitere Berichte zu: CPC Chromosomen Chromosomen-Aufteilung EMBL Regulator Survivin Zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik