Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Besser biegen mit Scharnier: Biomotoren und Nanotechnologie optimieren

24.10.2007
Manche großen Biomoleküle sind richtige Schwerarbeiter. Molekulare Motoren etwa transportieren große Lasten innerhalb der Zelle entlang von Filamenten, den zellulären "Autobahnen".

Wie bei Automotoren auch, muss dabei die aus dem Treibstoff gewonnene Energie schnell und effizient in mechanische Bewegung umgesetzt werden. Biologische Maschinen verwenden dazu molekulare Scharniere und Hebelarme. Professor Erwin Frey von der Ludwig-Maximilians-Universität (LMU) München und Professor Ulrich Gerland von der Universität zu Köln konnten jetzt mit Hilfe ihrer Mitarbeiter Richard Neher und Wolfram Möbius anhand eines theoretischen Modells zeigen, dass die Biegsamkeit der Hebelarme ein entscheidender Faktor für die Funktionsweise molekularer Motoren ist.

Wie die Wissenschaftler in der aktuellen Ausgabe der Fachzeitschrift "Physical Review Letters" berichten, lässt sich die Steifigkeit der Hebelarme so optimieren, dass Biomotoren schnell und gleichzeitig robust arbeiten, also sowohl kleine wie große Lasten mit gleicher Effizienz transportieren können. Die für diese theoretische Berechnung neu entwickelte analytische Methode kann nun allgemein für ähnliche biologische Fragestellungen genutzt werden - oder für Entwicklungen in der Nanobiotechnologie.

Viele biologische Funktionen hängen davon ab, dass Makromoleküle Übergangsformen ihrer räumlichen Anordnung einnehmen können. Der Transport zellulärer Lasten durch molekulare Motoren ist nur ein Beispiel dafür. Auch das Erbmolekül DNA muss etwas Flexibilität zeigen, etwa wenn bestimmte Proteine an die langgestreckte Doppelhelix binden wollen oder wenn diese von anderen Proteinen befreit wird, um besser zugänglich zu sein. Bei diesen und entsprechenden Prozessen muss ein langes Segment in dem betreffenden Molekül oder Komplex während der Übergangsphase gedreht werden. Dazu muss das Segment aber in gewissem Umfang biegsam sein. Eine entscheidende Größe bei diesen Prozessen ist die Reaktionsrate, bei molekularen Motoren ist das etwa die "Schwenkgeschwindigkeit" des Arms, die in diesem Fall für die Laufgeschwindigkeit des Moleküls entlang des Filaments entscheidend ist. "Wir konnten zeigen, dass die Reaktionsrate besonders hoch ist, wenn der Arm ein Scharnier hat", so Gerland. "Dieser physikalische Effekt kann von der Natur oder der Nanoforschung genutzt werden. Tatsächlich wurden entsprechende Scharniere - so etwa wie Ellbogen in den molekularen Armen - bereits nachgewiesen."

... mehr zu:
»Biomotore »Molekül »Physik »Prozess »Scharnier

Daneben zeigt die Arbeit auch, dass die Reaktionsrate optimal ist, wenn diese Scharniere weder ganz steif sind, noch eine völlig freie Rotation erlauben. Sie müssen vielmehr eine "mittlere" Steifigkeit haben. Denn dann ist die Reaktionsrate auch besonders robust, sie hängt also fast nicht von der Größe der Last ab, die der molekulare Motor transportiert. "Der Aspekt der Robustheit hat bei molekularbiologischen Systemen sogar eine besondere Bedeutung", so Frey. "Denn in der stürmischen molekularen Welt gibt es viele Möglichkeiten für Störungen und Fluktuationen.

Trotzdem aber muss die Funktion der Systeme sichergestellt sein." Diese Fragen haben die Forscher mit Hilfe eines stark vereinfachten Modells untersucht. Erstmals konnte damit quantitativ beschrieben werden, wie ein physikalischer Prozess, nämlich die Biegesteifigkeit in einem langgestreckten Makromolekül, direkten Einfluss auf die Reaktionsrate eines biochemischen Vorgangs, also die Änderung der räumlichen Anordung des Moleküls, haben kann. Die für ein genaues Verständnis des Modells neu entwickelten theoretischen Konzepte können nun allgemein auf Reaktionsprobleme ähnlicher Art angewendet werden kann.

Erwin Frey gehört dem Exzellenzcluster "Nanosystems Initiative Munich (NIM)" an, in dessen Rahmen dieses Projekt gefördert wurde. Die Arbeiten wurden an der LMU durchgeführt.

Publikation:
"Optimal flexibility for conformational transitions in macromolecules",
Richard A. Neher, Wolfram Möbius, Erwin Frey and Ulrich Gerland,
Physical Review Letters, 22. Oktober 2007
Ansprechpartner:
Professor Dr. Erwin Frey
Department für Physik der LMU
Arnold-Sommerfeld-Center für Theoretische Physik der LMU
Tel.: 089 / 2180-4537 und -4538
E-Mail: frey@lmu.de
Professor Dr. Ulrich Gerland
Institut für Theoretische Physik der Universität zu Köln
Tel.: 221 / 470-4309
Fax: 221 / 470-2189
E-Mail: ulrich.gerland@uni-koeln.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Biomotore Molekül Physik Prozess Scharnier

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen
16.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht Leuchtende Echsen - Knochenbasierte Fluoreszenz bei Chamäleons
15.01.2018 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften