Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler weisen an einem altertümlichen asexuellen Rädertierchen eine besondere Art der Evolution nach

15.10.2007
Wie man auch ohne Sex überleben kann

Asexuelle Fortpflanzung hat in der Evolution einen erheblichen Nachteil: Sie erzeugt normalerweise zu wenig genetische Variabilität. Es gibt allerdings Überlegungen, dass unter den Bedingungen von asexueller Fortpflanzung Varianten eines Gens unterschiedliche Entwicklungswege einschlagen und schließlich zu Proteinen mit unterschiedlicher Funktion führen.


Es kommt auch ohne Sex aus, das kleine Rädertierchen Adineta ricciae. Bild: Natalia N. Pouchkina-Stantcheva

Wissenschaftler der Universitäten Cambridge und Angers und des Max-Planck-Instituts für molekulare Pflanzenphysiologie in Potsdam haben nun an einem kleinen Rädertierchen nachgewiesen, dass dieser Weg im Zuge asexueller Vermehrung tatsächlich beschritten wird und die Anpassungsfähigkeit des Organismus - in diesem Fall seine Austrocknungstoleranz - erhöht (Science, 12. Oktober 2007).

Warum pflanzen sich eigentlich nahezu alle Organismen sexuell fort? Ginge es nur um reine Zahlen, Sex wäre schon längst von der Bildfläche verschwunden oder im Verlauf der Evolution erst gar nicht entstanden. Denn gemessen am Reproduktionserfolg ist sexuelle Fortpflanzung der asexuellen, die auf die Produktion nicht reproduktiver Männchen verzichtet, weit unterlegen. Doch sexuelle Fortpflanzung führt zu einer größeren genetischen Variabilität - das ist ihr großer Vorteil. Väterliches und mütterliches Erbgut werden bei den Nachkommen neu kombiniert; positive Mutationen können somit zusammengeführt, negative überdeckt werden. Genetische Variabilität ist daher eine "Versicherung" für die Zukunft: Innerhalb einer Population wird es immer Individuen geben, die bei sich ändernden Umweltbedingungen besser angepasst sind als ihre Artgenossen und damit das Überleben der Art sichern.

Die Nachkommen asexueller Fortpflanzung sind dagegen genetisch identisch, es sind Klone ihrer Mutter. Ihre Anpassungsfähigkeit an sich ändernde Umweltbedingungen ist aufgrund der geringeren genetischen Variabilität erschwert. Zahlreiche sich asexuell fortpflanzende Organismen schieben deshalb immer wieder einen sexuellen Fortpflanzungszyklus ein, wie zum Beispiel die Wasserflöhe.

Einer der wenigen Organismen, der sich seit Millionen von Jahren asexuell fortpflanzt, ist das kleine Rädertierchen Adineta ricciae. Ein Team von Wissenschaftlern der Universitäten Cambridge und Angers und des Max-Planck-Instituts für molekulare Pflanzenphysiologie in Potsdam hat die Anpassungsfähigkeit dieses mikroskopisch kleinen Vielzellers in Bezug auf Austrocknung untersucht. Grundlage ihrer Überlegungen war der sogenannte Meselson-Effekt. Er besagt, dass sich im Zuge der asexuellen Vermehrung Allele (das sind Varianten ein und desselben Gens) unabhängig voneinander entwickeln, da ihre genetischen Sequenzen nicht mehr bei der Entstehung der Geschlechtszellen (Meiose) auf Gleichartigkeit überprüft werden. Auf diese Art und Weise käme also auch ein sich asexuell fortpflanzender Organismus zu genetischer Variabilität. Würde sich bei einem bestimmten Gen ein Beleg für diesen besonderen Evolutionsmechanismus finden lassen?

Die Wissenschaftler wählten ein Allelpaar, also die zwei Varianten eines Gens aus, dessen Proteine in Zusammenhang mit der Austrocknungstoleranz des Rädertierchens stehen. So produziert das eine Gen (Ar-lea-1a) ein Protein, das die Proteine in der Zelle daran hindert, bei Austrocknung zu verklumpen, während das Protein des anderen Gens (Ar-lea-1b) die Zellmembran vor Schäden bei Austrocknung schützt, indem es an sie bindet und ein Reißen verhindert. Diese veränderte Bindungseigenschaft ist auf eine Sequenzänderung von 13,5 Prozent zwischen den beiden Genen zurückzuführen. "Ein solcher Sequenzunterschied innerhalb zweier Allele wird bei sich sexuell fortpflanzenden Organismen nicht erreicht", sagt der Max-Planck-Wissenschaftler Dirk Hincha. Die Arbeit der Forscher liefert somit einen Nachweis, dass der von Meselson postulierte Effekt in der Natur tatsächlich auftritt und einen wirksamen Anpassungsmechanismus für einen sich asexuell fortpflanzenden Organismus darstellt. Vermutlich kann Adineta ricciae deshalb seit Millionen Jahren auf Sex verzichten.

[JR/CB]

Originalveröffentlichung:

Natalia N. Pouchkina-Stantcheva, Brian M. McGee, Chiara Boschetti, Dimitri Tolleter, Sohini Chakrabortee, Antoneta V. Popova, Filip Meersman, David Macharel, Dirk K. Hincha & Alan Tunnacliffe
Functional divergence of former alleles encoding LEA proteins in a desiccation-tolerant, ancient asexual invertebrate

Science, 12. Oktober 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Evolution Fortpflanzung Gen Organismus Protein Rädertierchen Variabilität

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie