Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Moleküle in den Zellkern gelangen

12.10.2007
Wissenschaftler des Nationalen Forschungsschwerpunkts (NFS) Nanowissenschaften am Swiss Nanoscience Institute (SNI) haben mit einem innovativen Ansatz entziffert, wie Makromoleküle die Barriere in das Innere des Zellkerns passieren können.

Die Studie des Forscherteams vom Biozentrum der Universität Basel und des Institute of Materials Research and Engineering in Singapur, die letzte Woche online im renommierten Wissenschaftsmagazin "Science" veröffentlicht wurde, hat damit ein Mysterium aufgeklärt.

In jeder tierischen oder menschlichen Zelle herrscht ein stetiger Austausch von Molekülen zwischen Zellkern und Zellplasma. Der Transport der verschiedenen Substanzen geschieht über Schleusen in der Kernmembran, die den Zellkern umgibt und ihn vom Zellplasma trennt. Diese Schleusen, auch Kernporenkomplexe genannt, bestehen aus etwa dreissig verschiedenen Eiweissen (Nukleoporine), die symmetrisch um eine zentrale Pore angeordnet sind.

In früheren Untersuchungen konnte das Forscherteam um Dr. Roderick Lim, Dr. Birthe Fahrenkrog und Prof. Ueli Aebi vom Biozentrum der Universität Basel bereits zeigen, dass diese Eiweisse ungefaltet wie Tentakel aus der Pore ragen und eine pilzkopfartige Barriere für grössere Moleküle bilden.

Jetzt haben die Wissenschaftler anhand von rasterkraftmikroskopischen in vitro Messungen gezeigt, wie grössere Moleküle aktiv durch die Kernporenkomplexe gelangen. Die Cargomoleküle müssen sich zunächst mit bestimmten Transportrezeptoren (Karyopherin-beta1) assoziieren. Bei der Passage durch die Pore binden diese Transportrezeptoren an die "Tentakeleiweisse" der Pore.

Ausgelöst durch diese Bindung kollabieren die Tentakel und ziehen damit den gebunden Transportrezeptor zusammen mit dem Cargomoleküle ins Innere und schliesslich durch die Pore. Ein weiteres Protein im Kern (RanGTP) kehrt diesen Prozess wieder um: die Bindung der Transportrezeptoren mit den Tentakeleiweissen wird gelöst, das Cargomoleküle wird im Kern frei gesetzt, die Tentakeleiweisse strecken sich und die pilzkopfartige Barriere kann wieder Moleküle am Eintritt in die Pore hindern.

Die Prozesse, die beim Transport durch die Kernmembran in und aus dem Kern ablaufen, spielen sich in Grössenordnungen von Nanometern ab. Daher untersuchen die Wissenschaftler die Vorgänge auch rasterkraftmikroskopisch im Nanometermassstab. Sie haben diese Erkenntnisse jedoch auch mit in situ Beobachtungen an Oozyten untermauert und damit den selektiven Transport von Molekülen durch die Kernmembran weitestgehend aufgeklärt. Die Veröffentlichung der Ergebnisse im Wissenschaftsmagazin "Science" unterstreicht die Bedeutung der Untersuchungen.

Auch der Schweizerische Nationalfonds hat die Arbeiten von Dr. Roderick Lim und Prof. Ueli Aebi kürzlich gewürdigt, indem er den Wissenschaftlern ein eigenes Forschungsprojekt mit einer Fördersumme von 530'000 Franken für die kommenden drei Jahre genehmigt hat.

Orginalbeitrag
Roderick Y.H. Lim, Birthe Fahrenkrog, Joachim Köser, Kyrill Schwarz-Herion, Jie Deng, and Ueli Aebi
Nanomechanical Basis of Selective Gating by the Nuclear Pore Complex
Published online October 4, 2007 in Science Express, DOI: 10.1126/science.1145980
Swiss Nanoscience Institute (SNI)
Das Swiss Nanoscience Institute (SNI) geht aus dem Nationalen Forschungsschwerpunkt (NFS) Nanowissenschaften hervor und bildet einen universitären Forschungsschwerpunkt an der Universität Basel. Im SNI wird grundlagenwissenschaftliche mit anwendungsorientierter Forschung verknüpft. Innerhalb verschiedener Projekte beschäftigen sich die Forschenden mit Strukturen im Nanometerbereich. Sie möchten Impulse für Lebenswissenschaften, Nachhaltigkeit, Informations- und Kommunikationstechnologie geben. Die Universität Basel fungiert als Leading House und koordiniert das NFS-Netzwerk aus Hochschul- und Forschungsinstituten und Industriepartnern, das vom Schweizerischen Nationalfonds im Auftrag des Bundes durchgeführt wird, sowie das vom Kanton Aargau finanzierte Argovia-Netzwerk. Mit Gründung des SNI sichert sich die Universität Basel ihre international anerkannte Stellung als Exzellenzzentrum für Nanowissenschaften.

Hans Syfrig | idw
Weitere Informationen:
http://www.unibas.ch/index.cfm?CE2C8B4D3005C8DEA3309F84D354E973

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Riesenfresszellen steuern die Entwicklung von Nerven und Blutgefäßen im Gehirn
30.05.2017 | Deutsches Krebsforschungszentrum

nachricht 3D-Druckertinte aus dem Wald
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode zur Charakterisierung von Graphen

Wissenschaftler haben eine neue Methode entwickelt, um die Eigenschaften von Graphen ohne das Anlegen störender elektrischer Kontakte zu charakterisieren. Damit lassen sich gleichzeitig der Widerstand und die Quantenkapazität von Graphen sowie von anderen zweidimensionalen Materialien untersuchen. Dies berichten Forscher vom Swiss Nanoscience Institute und Departement Physik der Universität Basel im Wissenschaftsjournal «Physical Review Applied».

Graphen besteht aus einer einzigen Lage von Kohlenstoffatomen. Es ist transparent, härter als Diamant, stärker als Stahl, dabei aber flexibel und ein deutlich...

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Detaillierter Blick auf molekularen Gifttransporter

Transportproteine in unseren Körperzellen schützen uns vor gewissen Vergiftungen. Forschende der ETH Zürich und der Universität Basel haben nun die hochaufgelöste dreidimensionale Struktur eines bedeutenden menschlichen Transportproteins aufgeklärt. Langfristig könnte dies helfen, neue Medikamente zu entwickeln.

Fast alle Lebewesen haben im Lauf der Evolution Mechanismen entwickelt, um Giftstoffe, die ins Innere ihrer Zellen gelangt sind, wieder loszuwerden: In der...

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftsforum Chemie 2017

30.05.2017 | Veranstaltungen

Erfolgsfaktor Digitalisierung

30.05.2017 | Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Methode zur Charakterisierung von Graphen

30.05.2017 | Physik Astronomie

Riesenfresszellen steuern die Entwicklung von Nerven und Blutgefäßen im Gehirn

30.05.2017 | Biowissenschaften Chemie

Nano-U-Boot mit Selbstzerstörungs-Mechanismus

30.05.2017 | Biowissenschaften Chemie