Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aspirin schaltet Gene an

08.10.2007
HZI-Wissenschaftler entwickeln Verfahren, um Genregulation zu untersuchen

Infektionen sind äußerst komplizierte biologische Prozesse: Zahlreiche Gene sowohl des Krankheitserregers als auch des befallenen Organismus sind an ihrem Ausbruch und an ihrer Bekämpfung beteiligt.

Wissenschaftler des Helmholtz-Zentrums für Infektionsforschung in Braunschweig haben jetzt ein verblüffend einfaches Verfahren entwickelt, mit dem sie einzelne Gene von Bakterien während einer Infektion mit Aspirin gezielt anschalten können. Damit lässt sich die Funktion des Erbmaterials im Krankheitsprozess in Zukunft genau untersuchen. Seine Ergebnisse veröffentlicht das Team um den HZI-Forscher Prof. Carlos A. Guzman heute in der Fachzeitschrift "Nature Methods".

Krankmachende Bakterien setzen vielfältige Tricks ein, um in unseren Körper zu gelangen. Dazu gehören auch spezielle Proteine -- so genannte Virulenzfaktoren -- mit denen die Krankheitserreger unsere Körperzellen regelrecht aufschließen, in sie eindringen und sich dann vermehren.

... mehr zu:
»ASA »Aspirin »Bakterium »Gen »Infektion

Gesteuert wird die Produktion der Virulenzfaktoren von den Genen der Bakterien. "Da sich immer eine große Zahl dieser Proteine an der Infektion beteiligt, ist es sehr schwer, die Rolle und Bedeutung einzelner Virulenzfaktoren zu bestimmen", erklärt Guzman das Dilemma der Infektionsforscher: "Das wird erst möglich, wenn wir die Gene ganz gezielt anschalten können."

Zwar habe es entsprechende künstliche genetische Schalter bereits gegeben, so Guzman: "Sie hatten aber Nebenwirkungen oder waren nicht effizient genug und ließen eine ungestörte Beobachtung im ganzen Organismus nicht zu." Den Durchbruch ist Guzmans Team mit einer Substanz namens Acetyl-Salicylsäure (ASA) gelungen, dem Wirkstoff von Aspirin.

Seine Wirkungsweise ist bestens bekannt, Nebenwirkungen verursacht ASA kaum.

Das Verfahren, mit Aspirin Gene anzuschalten, erklärt Dr. Pablo Becker, der darüber bei Guzman promoviert hat: "Wir haben einen speziellen Genschalter -- einen so genannten Promotor -- konstruiert, der empfindlich auf ASA reagiert. Befindet sich ASA in seiner Umgebung, wird das Gen abgelesen und in ein Protein übersetzt. Fehlt ASA, schaltet der Promotor das Gen ab. Dies erlaubt uns, eine gezielte Aktivierung zu unterschiedlichen Zeitpunkten während des Infektionsprozesses.

Den Funktionstest für den ASA-empfindlichen Genschalter führten die Braunschweiger Forscher jedoch nicht bei einer Infektion sondern bei Krebs durch. Guzman: "Wir haben Bakterien der Gattung Salmonella zunächst den neuen Genschalter eingepflanzt." Dort steuert er die Funktion eines Gens, das für die Aktivierung eines Krebsmedikaments verantwortlich ist. Salmonellen können im Körper krebskranker Organismen, beispielsweise bei Mäusen, in Tumore einwandern. Dort sammeln sie sich regelrecht an. "Verabreicht man den Mäusen nun Aspirin sowie eine Vorläufersubstanz des Krebsmedikaments", so Guzman, "dann produzieren die Salmonellen tatsächlich den Aktivator für die Bildung des Zytostatikums und die Tumore schrumpfen. Der Vorteil hierbei ist, dass dieser Prozess gezielt in den Tumoren abläuft und somit weniger Nebenwirkungen auftreten."

Obwohl Guzman und Becker mit der erfolgreichen Bekämpfung des Krebses bewiesen haben, dass man mit Aspirin Gene anschalten kann, wollen sie ihre Aufmerksamkeit nun auch den Infektionen zuwenden: "Wir wollen damit verstehen, wie sich Infektionserreger und Wirte gegenseitig beeinflussen", so Becker. "Und mit diesem Wissen dann Strategien für neue Medikamente und Impfstoffe entwickeln."

Originalpublikation:
Jose Luis Royo, Pablo Daniel Becker, Eva Maria Camacho, Angel Cebolla, Claudia Link, Eduardo Santero, Carlos Alberto Guzman: In vivo gene regulation in Salmonella spp. by a salicylate-dependent control circuit.

Nature Methods, DOI: 10.1038/nmeth1107.

Hannes Schlender | Helmholtz Infektionsforschung
Weitere Informationen:
http://www.helmholtz-hzi.de

Weitere Berichte zu: ASA Aspirin Bakterium Gen Infektion

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie

Freie Elektronen in Sonnen-Protuberanzen untersucht

25.07.2017 | Physik Astronomie

Die turbulente Atmosphäre der Venus

25.07.2017 | Physik Astronomie