Haarnadel auf Partnersuche – Ultraschnelle Dynamik der Proteinfaltung nachgewiesen

Fehler bei diesem hoch komplexen Prozess können zu neurodegenerativen Erkrankungen, etwa Alzheimer und Parkinson, aber auch zu anderen Leiden führen. Dennoch ist die Proteinfaltung noch weitgehend unverstanden.

Ein Forscherteam um Professor Wolfgang Zinth, Lehrstuhl für BioMolekulare Optik der Ludwig-Maximilians-Universität (LMU) München hat nun in Zusammenarbeit mit Wissenschaftlern des Max-Planck-Instituts für Biochemie in Martinsried die Faltung und Entfaltung eines häufigen Strukturmotivs von Proteinen untersucht.

Wie in der Fachzeitschrift „Proceedings of the National Academy of Sciences (PNAS)“ berichtet, läuft die Auflösung dieser so genannten Haarnadelstruktur extrem schnell ab, während ihre Bildung etwa 100.000-mal länger dauert – wohl weil eine Vielzahl von Anordungen erst getestet werden muss.

Die korrekte Faltung einer Aminosäurekette in ein funktionsfähiges Protein, etwa ein Enzym, ist von fundamentaler Bedeutung für nahezu alle Prozesse im Körper. „Eine besonders wichtige Rolle bei diesen Vorgängen spielen die so genannten Betastrukturen der Proteine“, berichtet Projektleiter Zinth. „Bei diesen Faltblättern und Haarnadelstrukturen laufen die Aminosäurestränge parallel oder antiparallel zueinander.“ Für ihre Untersuchung nutzten die Forscher eine einfache Haarnadelstruktur als Modell für die komplexeren Faltblätter. In diesem Fall wurde zusätzlich ein Farbstoff eingebaut, so dass die Struktur der Haarnadel durch Licht verändert werden konnte. Diese Vorgänge – sowie die dabei gebildeten Zwischenstufen – konnten nur mit Hilfe von Simulationsmethoden und der Ultrakurzzeitspektroskopie verfolgt werden.

Denn die Prozesse der Faltung und Umfaltung erfolgten extrem schnell – wenn auch mit unterschiedlicher Geschwindigkeit. Die Aufschaltung der Haarnadelstruktur, also ihre durch Licht bewirkte Zerstörung, erfolgte innerhalb weniger 100 Pikosekunden. Eine Pikosekunde ist der millionste Teil einer millionstel Sekunde. Im Gegensatz dazu dauerte die Faltung der Haarnadelstruktur etwa 100.000-mal länger. „Dieser Unterschied wird offensichtlich dadurch verursacht, dass die beiden Stränge der Haarnadel bei der Faltung erst verschiedene Anordnungen austesten müssen, bevor die korrekte Struktur gefunden ist“, meint Zinth. „In Analogie kann man sich das Auffalten der Haarnadel wie das Aufplatzen eines Reißverschlusses vorstellen, während beim Schließen viele mögliche Anordnungen aktiv durchsucht werden müssen, bevor die beiden Hälften korrekt aufeinander passen.“

Publikation:
„Light-triggered – hairpin folding and unfolding“,
Tobias E. Schrader, Wolfgang J. Schreier, Thorben Cordes, Florian O. Koller, Galina Babitzki, Robert Denschlag, Christian Renner, Markus Löweneck, Shou-Liang Dong, Luis Moroder, Paul Tavan, and Wolfgang Zinth,

PNAS Early Ediiton, 25. September 2007

Ansprechpartner:
Professor Dr. Wolfgang Zinth
Biomolekulare Optik, Department für Physik der LMU
Tel.: 089 / 2180-9201
Fax: 089 / 2180-9202
E-Mail: zinth@physik.uni-muenchen.de

Media Contact

Luise Dirscherl idw

Weitere Informationen:

http://www.uni-muenchen.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer