Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Haarnadel auf Partnersuche - Ultraschnelle Dynamik der Proteinfaltung nachgewiesen

28.09.2007
Proteine sind die wichtigsten Funktionsträger der Zelle. Sie bestehen aus einer oder mehreren linearen Ketten, deren Bausteine die Aminosäuren sind. Ihre Aufgaben können Proteine aber nur erfüllen, wenn sich diese Stränge in eine jeweils spezifische, dreidimensionale Struktur gefaltet haben.

Fehler bei diesem hoch komplexen Prozess können zu neurodegenerativen Erkrankungen, etwa Alzheimer und Parkinson, aber auch zu anderen Leiden führen. Dennoch ist die Proteinfaltung noch weitgehend unverstanden.

Ein Forscherteam um Professor Wolfgang Zinth, Lehrstuhl für BioMolekulare Optik der Ludwig-Maximilians-Universität (LMU) München hat nun in Zusammenarbeit mit Wissenschaftlern des Max-Planck-Instituts für Biochemie in Martinsried die Faltung und Entfaltung eines häufigen Strukturmotivs von Proteinen untersucht.

Wie in der Fachzeitschrift "Proceedings of the National Academy of Sciences (PNAS)" berichtet, läuft die Auflösung dieser so genannten Haarnadelstruktur extrem schnell ab, während ihre Bildung etwa 100.000-mal länger dauert - wohl weil eine Vielzahl von Anordungen erst getestet werden muss.

Die korrekte Faltung einer Aminosäurekette in ein funktionsfähiges Protein, etwa ein Enzym, ist von fundamentaler Bedeutung für nahezu alle Prozesse im Körper. "Eine besonders wichtige Rolle bei diesen Vorgängen spielen die so genannten Betastrukturen der Proteine", berichtet Projektleiter Zinth. "Bei diesen Faltblättern und Haarnadelstrukturen laufen die Aminosäurestränge parallel oder antiparallel zueinander." Für ihre Untersuchung nutzten die Forscher eine einfache Haarnadelstruktur als Modell für die komplexeren Faltblätter. In diesem Fall wurde zusätzlich ein Farbstoff eingebaut, so dass die Struktur der Haarnadel durch Licht verändert werden konnte. Diese Vorgänge - sowie die dabei gebildeten Zwischenstufen - konnten nur mit Hilfe von Simulationsmethoden und der Ultrakurzzeitspektroskopie verfolgt werden.

Denn die Prozesse der Faltung und Umfaltung erfolgten extrem schnell - wenn auch mit unterschiedlicher Geschwindigkeit. Die Aufschaltung der Haarnadelstruktur, also ihre durch Licht bewirkte Zerstörung, erfolgte innerhalb weniger 100 Pikosekunden. Eine Pikosekunde ist der millionste Teil einer millionstel Sekunde. Im Gegensatz dazu dauerte die Faltung der Haarnadelstruktur etwa 100.000-mal länger. "Dieser Unterschied wird offensichtlich dadurch verursacht, dass die beiden Stränge der Haarnadel bei der Faltung erst verschiedene Anordnungen austesten müssen, bevor die korrekte Struktur gefunden ist", meint Zinth. "In Analogie kann man sich das Auffalten der Haarnadel wie das Aufplatzen eines Reißverschlusses vorstellen, während beim Schließen viele mögliche Anordnungen aktiv durchsucht werden müssen, bevor die beiden Hälften korrekt aufeinander passen."

Publikation:
"Light-triggered - hairpin folding and unfolding",
Tobias E. Schrader, Wolfgang J. Schreier, Thorben Cordes, Florian O. Koller, Galina Babitzki, Robert Denschlag, Christian Renner, Markus Löweneck, Shou-Liang Dong, Luis Moroder, Paul Tavan, and Wolfgang Zinth,

PNAS Early Ediiton, 25. September 2007

Ansprechpartner:
Professor Dr. Wolfgang Zinth
Biomolekulare Optik, Department für Physik der LMU
Tel.: 089 / 2180-9201
Fax: 089 / 2180-9202
E-Mail: zinth@physik.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Haarnadel Haarnadelstruktur Protein Proteinfaltung Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics