Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jülicher Forscher schauen ins Innere von Synapsen

26.09.2007
Jülicher Forscher haben erstmals den Aufbau einer Synapse – der Kontaktstelle zwischen Nervenzellen – im Hippocampus bis ins kleinste Detail analysiert und in einem virtuellen 3D-Modell nachgebaut.

Die fünfjährige Arbeit liefert neben dem einzigartigen Blick in das Innenleben einer Synapse im Gehirn eine für die Neurowissenschaftler ernüchternde Erkenntnis: Die Vorstellung einer Modellsynapse für das Gehirn muss wahrscheinlich endgültig verworfen werden.

Neurowissenschaftler hatten die Hoffnung, die bislang am besten untersuchte Synapse des Zentralnervensystems, die Held‘sche Calyx, könnte als Standardmodell für Funktion und Struktur aller Synapsen genutzt und für Simulationen verwendet werden. „Leider stellt sich mehr und mehr heraus, dass die Held’sche Calyx eher die Ausnahme als die Regel repräsentiert“, sagen Astrid Rollenhagen und Joachim Lübke vom Jülicher Institut für Neurowissenschaften und Biophysik.

Die Wissenschaftler belegen dies jetzt im Fachmagazin Journal of Neuroscience. Dort präsentieren sie gemeinsam mit Kollegen den detaillierten Aufbau einer anderen Synapse mit einem zwar ähnlich exotischen Namen, aber ansonsten deutlich anderer Struktur: der Moosfaserbouton, benannt nach dem moosförmig gelappten Endknöpfchen der Nervenfaser (bouton frz. für Knöpfchen).

Ganze fünf Jahre dauerte der aufwändige, detaillierte virtuelle Nachbau der Synapse, der weltweit überhaupt nur von einer Hand voll Labore auf ähnliche Weise geleistet werden kann. Die Jülicher Forscher fertigten Ultradünnschnitte aus winzigen Hirnstückchen des Ratten-Hippocampus an und übertrugen digitale Bilder der Schnittserien in einen Hochleistungsrechner. Per Hand zeichneten die Wissenschaftler am Bildschirm jede einzelne synaptische Struktur nach und erstellten ein dreidimensionales Computermodell des Moosfaserboutons.

Die Analyse dieser Strukturen offenbart, warum die Held’sche Calyx als Standardmodell nur begrenzten Nutzen hat und warum sich eine Synapse wohl grundsätzlich nicht als Standardmodell eignen kann. „Die Plastizität ist beim Moosfaserbouton völlig anders und lässt sich mit dem unterschiedlichen strukturellen Aufbau erklären“, sagt Astrid Rollenhagen. „Er ist in

Lern- und Gedächtnisprozesse eingebunden und muss daher flexibler auf eingehende Signale reagieren, als die am Richtungshören beteiligte Held´sche Calyx.“

Obwohl der Moosfaserbouton etwa 15-mal kleiner ist als die Held‘sche Calyx, enthält er relativ zur Größe viel mehr synaptische Bläschen – Vesikel –, welche einen Botenstoff enthalten, mit dem Signale übertragen werden. „Die Pools an schnell verfügbaren und recycelbaren Vesikeln sind außerdem etwa acht mal größer als in der Riesensynapse“, sagt Joachim Lübke.

Auch die Bereiche, an denen die Botenstoffe in den sogenannten synaptischen Spalt freigesetzt werden, sind im Vergleich zur Held’schen Calyx teilweise größer, liegen dichter zusammen und sitzen auf dornenartigen Strukturen („Spiny excrescenses“).

Der ausgeschüttete Transmitter, hat dort weitgehend freie Bahn und kann auch benachbarte Zonen aktivieren, die kein direktes Signal erhalten haben (synaptischer Crosstalk). Auch die Ausläufer der Gliazellen – spezialisierte Stützzellen, die die Signalweiterleitung beeinflussen können – dringen nicht bis zu den aktiven Zonen vor.

Nach dem Moosfaserbouton untersuchen Astrid Rollenhagen und Joachim Lübke mit ihren Kooperationspartnern nun einen dritten Synapsentyp in einer anderen Hirnstruktur, der Großhirnrinde. Schon jetzt zeigt sich: Auch diese Synapsen sind entsprechend ihrer Funktion anders aufgebaut. Damit wird immer klarer: Der Traum von der Modellsynapse ist wahrscheinlich endgültig ausgeträumt. Joachim Lübke: „So wie es jetzt aussieht, müssen wir in den sauren Apfel beißen und jede einzelne Synapse in ihrem neuronalen Netzwerk detailliert analysieren. Denn nur wenn wir wissen, wie sie aufgebaut sind, werden wir wirklich verstehen, wie Synapsen funktionieren.“

Weitere Bilder und Informationen:

http://www.fz-juelich.de/
http://www.jneurosci.org, The Journal of Neurosciences, Sep. 2007
Pressekontakt:
Prof. Joachim Lübke, Zelluläre Neurobiologie, Institut für Neurowissenschaften und Biophysik Forschungszentrum Jülich
Tel.: 02461-61-2288/ -4354/ -1484
E-Mail: j.lübke@fz-juelich.de, a.rollenhagen@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://www.fz-juelich.de
http://www.jneurosci.org

Weitere Berichte zu: Calyx Moosfaserbouton Neurowissenschaft Synapse

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik