Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auch Nervenzellen haben eine Achillesferse

25.09.2007
Ein neuer Angriffsmechanismus könnte die Schädigung von Nervenzellen bei Multiple Sklerose erklären

Wenn das Immunsystem verrückt spielt und anstatt Viren und Bakterien Zellen des eigenen Körpers angreift, so hat dies meist schlimme Folgen. Im Fall der Multiplen Sklerose ist das Ziel dieser fehlgeleiteten Immunabwehr das zentrale Nervensystem. Wissenschaftler des Max-Planck-Instituts für Neurobiologie und des Instituts für klinische Neuroimmunologie (LMU) haben mit einem internationalen Team jetzt einen neuen Angriffsmechanismus dieser Krankheit aufgedeckt. Die Ergebnisse könnten zu neuen Therapieansätzen für manche Patienten führen.


Ein neuer Angriffsmechanismus der Multiplen Sklerose: Rot gefärbt sind die Teile des Myelin-Schutzmantels, die an die Myelin-freien Schnürringe angrenzen. Genau an diesen Aussparungen binden die grün gefärbten Antikörper an Neurofascin. Durch die Bindung werden die Nervenzellen geschädigt. Die Folge: bleibende Behinderungen. Bild: MPI für Neurobiologie

Lähmungen, Empfindungsstörungen, Sehstörungen - nicht umsonst wird Multiple Sklerose auch "die Krankheit mit den tausend Gesichtern" genannt. Allein in Deutschland sind schätzungsweise 100 000 Menschen betroffen - und bei jedem von ihnen kann die Krankheit anders in Erscheinung treten. Ihren Verlauf langfristig vorherzusagen, ist deshalb meist schwierig. Eines haben jedoch alle Patienten gemein: Durch den Angriff des eigenen Immunsystems verlieren Nervenzellen im Gehirn und im Rückenmark ihren Schutzmantel aus Myelin. Die Nervenfasern werden geschädigt und bleibende Behinderungen sind die Folge.

Neue Antikörper im Blut gefunden

Um besser zu verstehen, wie das Immunsystem den Myelin-Schutzmantel angreift, haben die Wissenschaftler zunächst untersucht, welche Myelinbestandteile von Antikörpern erkannt werden. Durch den Einsatz modernster Methoden fanden sie dabei Antikörper gegen das Protein Neurofascin. Das ist ein sehr spannender Fund, denn Neurofascin kommt nicht nur als Bestandteil des Myelin-Schutzmantels vor, sondern ist in einer zweiten Form auch direkt auf der Oberfläche der Nervenfasern zu finden.

Antikörper dringen zu den Nerven durch

Aber ist Neurofascin wirklich zugänglich für Antikörper? Laboruntersuchungen ergaben, dass Antikörper von Multiple Sklerose Patienten beide Neurofascin-Formen erkennen und binden können. Im gesunden Körper versperrt der Myelin-Schutzmantel jedoch den Zugang zu der hier eingebetteten Neurofascin-Form. Ein Angriff an dieser Stelle ist somit erst möglich, nachdem der Schutzmantel schon durch andere Mechanismen geschädigt wurde.

Anders verhält es sich mit der Neurofascin-Form, die direkt auf der Oberfläche der Nervenzelle verankert ist. Diese Form findet sich an den "Ranvier’schen Schürringen" - Myelin-freie Aussparungen im Schutzmantel, die alle paar Millimeter entlang der Nervenfaser auftreten. Diese Schnürringe sorgen für eine deutlich schnellere und effizientere Impulsübertragung entlang der Nervenfasern. Wie sich jetzt jedoch herausstellt, sind sie aber auch die Achillesferse der Nervenzellen. Denn hier ist Neurofascin nur noch durch die Blut-Hirn-Schranke vor einem Angriff der entsprechenden Antikörper geschützt. Aber auch diese wird in einem der frühen Schritte der Multiplen Sklerose porös und für Antikörper durchlässig. Die Wissenschaftler haben gezeigt, dass die Bindung zwischen Antiköper und dem Schnürring-Neurofascin dann nicht nur die Informationsweiterleitung der Zellen blockiert, sondern auch die Nervenfasern schädigt.

Neuer Therapieansatz

"Die direkte Schädigung der Nervenzellen durch Antikörper ist ein völlig neuer Angriffsmechanismus dieser komplizierten Krankheit", erklärt Edgar Meinl, einer der Leiter der Studie. "Dies könnte zum Krankheitsbild einiger Patienten beitragen." Zurzeit entwickeln die Wissenschaftler daher ein Testverfahren, mit dem sich die Konzentration der Antikörper gegen Neurofascin im Blut ermitteln lässt. Damit soll dann untersucht werden, ob ein Vorkommen der Neurofascin-Antikörper tatsächlich mit einem besonders schweren Verlauf der Krankheit beim Menschen zusammenhängt. Langfristig könnte dann zum Beispiel durch das Entfernen dieser Antikörper aus dem Blut ein neuer Therapieansatz entstehen.

Originalveröffentlichung:

Emily K. Mathey*, Tobias Derfuss*, Maria K. Emily K. Mathey*, Tobias Derfuss*, Maria K. Storch, Kieran R. Williams, Kimberly Hales, David R. Woolley, Abdulmonem Al-Hayani, Stephen N. Davies, Matthew N. Rasband, Tomas Olsson, Anja Moldenhauer, Sviataslau Velhin, Reinhard Hohlfeld, Edgar Meinl* und Christopher Linington*. *EKM und TD sowie EM und CL trugen zu jeweils gleichen Teilen zur Studie bei.
Neurofascin as a novel target for autoantibody-mediated axonal injury
The Journal of Experimental Medicine, September 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Antikörper Nervenfaser Nervenzelle Neurofascin Sklerose

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Gehirnregion vermittelt Genuss am Essen
22.08.2017 | Max-Planck-Institut für Neurobiologie

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences