Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteine samt Etikett nachbauen

25.09.2007
Dr. Dirk Schwarzer leitet eine neue Emmy-Noether-Gruppe am Leibniz-Institut für Molekulare Pharmakologie in Berlin. Seine Gruppe wird sich mit der Protein-Semisynthese befassen. Dabei geht es darum, Proteine künstlich so herzustellen, dass in die Eiweiße auch Veränderungen eingebaut werden, die normalerweise im Verlauf einer Signalkaskade entstehen.

Dr. Dirk Schwarzer leitet eine neue Arbeitsgruppe am Leibniz-Institut für Molekulare Pharmakologie in Berlin-Buch. Es handelt sich um eine "Emmy-Noether-Gruppe", der Name weist auf ein Stipendium der Deutschen Forschungsgemeinschaft (DFG) hin. Schwarzer hatte das renommierte Emmy-Noether-Stipendium im April dieses Jahres bewilligt bekommen und sich entschieden, damit eine eigene Arbeitsgruppe am FMP aufzubauen.

Er ist damit der erste Emmy-Noether-Stipendiat im Forschungsverbund Berlin e.V. (FVB). Seine Gruppe wird sich mit der Protein-Semisynthese befassen. Dabei geht es darum, Proteine so herzustellen, dass in die Eiweiße auch Veränderungen eingebaut werden, die normalerweise im Verlauf einer Signalkaskade entstehen.

Vereinfacht ausgedrückt: Im Organismus gibt es Botenstoffe, die innerhalb von Zellen oder zwischen den Zellen Signale übermitteln. Das sind häufig Proteine, die nach einem bestimmten Bauplan - kodiert in einem Gen - hergestellt werden. Mit modernen gentechnischen Verfahren kann man beispielsweise Bakterienstämme wie Escherichia-coli dazu bringen, Proteine eines Menschen nachzubauen. Das Problem: Während der Signalübermittlung verändern sich Proteine, es werden bestimmte Bausteine angehängt und wieder entfernt. Einer dieser Vorgänge heißt Phosphorylierung. Dirk Schwarzer sagt: "Schätzungsweise ein Drittel aller menschlichen Proteine werden phosporyliert." In den Zellen gibt es dazu bestimmte Werkzeuge.

... mehr zu:
»Eiweiß »Etikett »FMP »Protein »Signalkaskade

Die Phosphorylierung und verwandte Vorgänge kann man sich vorstellen wie ein Etikett, das an ein Paket gehängt und dann wieder abgeschnitten wird. Bakterien sind jedoch nicht in der Lage, derlei Veränderungen in die von ihnen produzierten Eiweiße einzubauen.

Hier setzt nun die Seminsynthese von Proteinen an: "Wir bauen gewissermaßen die Botenstoffe mitsamt ihrer Etiketten nach", erläutert Schwarzer. Dazu lassen er und seine Kollegen zunächst einen Teil der Proteine von den bakteriellen Helfern herstellen und synthetisieren einen anderen Teil mitsamt der gewünschten Veränderung auf chemischem Wege. Dann fügen die Wissenschaftler die Teile zusammen und bauen somit die Veränderungen - in der Fachsprache: post-translationale Modifikationen - in die Eiweiße ein. "Diese Proteine unterziehen wir dann biochemischen Tests", berichtet Schwarzer, "wir untersuchen beispielsweise, welche anderen Proteine daran binden." Auf diese Weise gelingt es den Wissenschaftlern, Signalübertragungsvorgänge im Organismus zu verstehen und auch die Signalkaskade zu beeinflussen. Sie können Vorgänge auslösen oder blockieren und damit als ultimatives Ziel in ein Krankheitsgeschehen eingreifen.

Schwarzers Gruppe ist angesiedelt in der Abteilung Chemische Biologie des FMP, die von Prof. Michael Bienert geleitet wird. Schwarzer selbst kommt von der Universität Dortmund, wo er Mitarbeiter von Prof. Henning Mootz war, der zuvor selbst eine Emmy- Noether-Forschergruppe geleitet hatte. Dirk Schwarzer (35) studierte Chemie in Marburg und ging nach seiner Promotion für drei Jahre nach Baltimore an die renommierte Johns Hopkins University. Seit 1. August ist er nun am FMP und leitet hier seine eigene Emmy-Noether-Forschungsgruppe.

Josef Zens | idw
Weitere Informationen:
http://www.fv-berlin.de

Weitere Berichte zu: Eiweiß Etikett FMP Protein Signalkaskade

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics