Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Balance halten - Neue Einblicke in die Steuerung von Stammzellen

13.09.2007
In den vergangenen Jahren haben Forscher immer mehr Einblick in die Regulation von Stammzellen und ihre Rolle bei der Selbsterneuerung und bei Reparaturmechanismen bekommen.

Jetzt haben sie festgestellt, dass ein Signalweg, der die Entwicklung sowie wichtige Vorgänge des Lebens steuert, auch die Stammzellen reguliert. Die Rede ist von dem Wnt-Signalweg. "Proteine dieses Signalpfads sind bei einer Reihe von Stammzellen aktiv. Dazu gehören neuronale Stammzellen, Stammzellen der Brust sowie embryonale Stammzellen", sagte Prof. Roel Nusse von der Stanford University, USA, bei seinem Festvortrag zur Eröffnung der internationalen Tagung über "Wnt Signaling in Development and Disease" im Max-Delbrück-Centrum für Molekulare Medizin (MDC) in Berlin-Buch. Er ist einer der Pioniere dieses Forschungsgebiets.

Es gibt eine Reihe von biologischen Signalpfaden, die die Lebensvorgänge steuern. Sie sind zum Beispiel notwendig, damit sich aus einem Embryo ein gesundes Lebewesen entwickeln kann. Weiter halten sie die lebensnotwendigen Funktionen im erwachsenen Organismus aufrecht. Diese Signalkaskaden reichen von der Zelloberfläche bis in die Schaltzentrale der Zelle mit dem Zellkern und der DNA. Kommt es durch Mutationen zu Fehlsteuerungen, können die Folge unter anderem Dickdarmkrebs und Brustkrebs, aber auch Herz-, Gehirn- und andere Krankheiten sein.

Der Wnt-Signalpfad ist einer der bisher am besten erforschten Signalwege. Er spielt bei der Embryonalentwicklung, beim Zellwachstum (Proliferation) und der Zellreifung oder Zellspezialisierung (Differenzierung) eine entscheidende Rolle. Und auch, wie die Forscher jetzt wissen, bei der Steuerung von Stammzellen.

Prof. Nusse legte die Grundlagen für die Erforschung dieses Feldes, als er 1982 ein Gen in Mäusen entdeckte, das er int1 nannte. Int steht für die Integration eines Tumorvirus in die zelluläre DNA. Es war identisch mit dem Gen, das die Tübinger Nobelpreisträgerin von 1995, Prof. Christiane Nüsslein-Volhard, ebenfalls Anfang der 80-er Jahre in der Fruchtfliege Drosophila melanogaster aufgespürt hatte. Sie nannte das Gen wingless (engl. für flügellos; wg), weil Fruchtfliegen mit dieser Genmutation keine Flügel ausbilden können. Dr. Nusse schlug vor, die beiden Namen der Gene zu wnt (wingless plus int) zu verschmelzen. Inzwischen sind rund 20 Wnt-ähnliche Gene bekannt. Im Gesamten umfasst die ganze Wnt-Signalkaskade aber viele Dutzende von Genen.

Relativ neu ist die Erkenntnis, dass die verschiedenen Signalpfade nicht einfach nebeneinander existieren, sondern dass sie auch miteinander kommunizieren. Klappt diese Kommunikation nicht reibungslos, können ebenfalls Krankheiten entstehen.

Stammzellen haben das Potential sich in die verschiedensten Zellen des Körpers zu entwickeln. Sie bilden aber auch das Reservoir, aus dem sich immer wieder Zellen erneuern, wie etwa Blutzellen oder Epithelzellen, die zum Beispiel die Haut bilden und die inneren Organe wie Brustdrüsen oder den Magen-Darm-Trakt auskleiden. Diese Zellen haben alle nur eine begrenzte Lebensdauer. Stammzellen sind außerdem auch die Quelle für die Regeneration von Gewebe nach Verletzungen. "Wnt-Proteine sorgen dafür, dass Stammzellen sich nicht differenzieren (spezialisieren)", betonte Dr. Nusse. Mit anderen Worten, die Wnt-Proteine sind dafür verantwortlich, dass das Reservoir an Stammzellen nicht "austrocknet".

Sobald der Körper jedoch Stammzellen aktiviert, müssen sie sich vermehren. "Das machen aber nicht die Wnt-Proteine, sondern andere Wachstumsfaktoren, etwa FGF (fibroblast growth factor) oder EGF (epidermal growth factor)", erläuterte Prof. Nusse. Diese Faktoren steuern einen anderen Signalpfad, bei dem Tyrosinkinasen eine Rolle spielen, Enzyme, die Proteine aktivieren und inaktivieren können. Vor wenigen Jahren kamen zum Beispiel mit Trastuzumab (Herceptin) und Imatinib (Gleevec) Medikamente auf den Markt, die mutierte Tyrosinkinase-Signalpfade blockieren und die Behandlung von Brustkrebs, Leukämien sowie eines speziellen Magen-Darm-Tumors revolutioniert haben.

In gesunden Zellen arbeiten Wnt und Tyrosinkinasen reibungslos zusammen, damit sich die vermehrenden Stammzellen dann auch spezialisieren (differenzieren) und ausreifen. "Dieses dynamische Zusammenspiel stellt sicher, dass die Balance zwischen Zellvermehrung und Zelldifferenzierung erhalten bleibt", betonte der niederländische Zellbiologe, der seit vielen Jahren in den USA arbeitet.

Gerät diese Balance in eine Schieflage, können gesunde Zellen zu Krebszellen werden. Beispiele dafür sind Brustkrebs und Dickdarmkrebs. Bei 90 Prozent aller Fälle von Dickdarmkrebs beim Menschen ist ein Hauptbestandteil des Wnt-Signalwegs dereguliert, der Tumorsuppressor APC (adenomatous polypolis coli).

In gesunden Zellen liegt das Signalprotein Beta-Catenin, ebenfalls ein Hauptspieler im Wnt-Signalpfad, angekettet an APC und weiteren Proteinen im Zellplasma. Dieser Proteinkomplex stellt sicher, dass Beta-Catenin zur richtigen Zeit im Mülleimer der Zelle, dem Proteasom, abgebaut wird.

Ist APC jedoch mutiert, löst Beta-Catenin sich aus seiner Verankerung, häuft sich im Zellplasma an und dringt dann in den Zellkern vor. Dort bindet es an den T-Zellfaktor TCF und schaltet Gene an. Dieser Vorgang gilt als Initialzündung für die Entstehung von Brust- sowie Dickdarmkrebs.

Normales Zellprogramm in gutartigen Darmgeschwulsten wiederhergestellt
Prof. Hans Clevers vom Hubrecht Labor und Zentrum für Biomedizinische Genetik in Utrecht, Niederlande, erforscht, wie die Verlagerung von Beta-Catenin aus dem Zellplasma in den Zellkern gesunde Zellen in Darmkrebszellen transformiert. Vor einigen Jahren hatte er TCF, einen der Mitspieler bei diesem Prozess, entdeckt. Diese Entdeckung wurde gleichzeitig auch am MDC in Berlin-Buch von der Arbeitsgruppe von Prof. Walter Birchmeier gemacht.

Wie Prof. Clevers in Berlin sagte, gelten die Verlagerung von Beta-Catenin und die Bindung an TCF zwar als Auslöser für die Krebsentstehung. "Aber eigentlich wissen wir bis heute nicht, was mutiertes und aktiviertes Beta-Catenin/TCF in Dickdarmkrebszellen wirklich macht", sagte er.

Mit seinen Mitarbeitern entwickelte Prof. Clevers Darmkrebszellen, in denen sie einen TCF-Komplex anschalten oder blockieren können. Sie konnten zeigen, dass aktiviertes Beta-Catenin/TCF tatsächlich die Differenzierung von Darmzellen verhindert. Zellen, die nicht differenzieren, geraten außer Kontrolle und wachsen ungehemmt, was charakteristisch ist für Krebszellen.

Blockierten die Forscher aber Beta-Catenin/TCF, konnten sie in den Darmkrebszellen das Differenzierungsprogramm wieder anschalten und hatten die Zellen damit wieder unter Kontrolle. Und das, obwohl die Zellen zahlreiche andere Mutationen aufwiesen. Weiter konnten sie zeigen, dass nicht alleine die Wnt-Signalkaskaden über das Schicksal der Zellen entscheiden, sondern ein weiterer Signalpfad mitbestimmt, der Notch-Weg.

Prof. Clevers und seinen Mitarbeitern gelang es, den Notch-Pfad mit bestimmten Enzymen, Gamma-Sekretase-Hemmern, zu blockieren. Dadurch konnten sie in Geschwulsten des Magen-Darm-Trakts (Adenomen) das Zelldifferenzierungsprogramm wieder anschalten. Adenome sind gutartige Geschwulste, die aber bösartig werden können. "Unsere Daten legen nahe, dass Gamma-Sekretase-Hemmer, die zur Behandlung der Alzheimer-Krankheit entwickelt werden, möglicherweise für die Therapie von Darmkrebs eingesetzt werden können", ist Prof. Clevers überzeugt.

Der internationale Kongresses im MDC gibt einen Überblick über den Stand der Forschung und einen Ausblick über die mögliche therapeutische Nutzung der bisher gewonnenen Erkenntnisse über diese Signalprozesse. Prof. Birchmeier und Mitorganisator Prof. Dr. Thomas Holstein von der Universität Heidelberg haben für diesen Kongress über 30 Entwicklungsbiologen, Zellbiologen und Krebsforscher aus den USA, Japan und Europa gewinnen können. An der Tagung, die am Sonnabend, den 15. September zu Ende geht, nehmen insgesamt 350 Wissenschaftler teil.

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
Weitere Informationen:
http://www.hhmi.org/research/investigators/nusse_bio.html
http://www.hhmi.org/research/investigators/nusse.html
http://www.stanford.edu/%7ernusse/wntwindow.html
http://cancer.stanford.edu/research/stemcell/
http://www.niob.knaw.nl/researchpages/clevers/groupleader.html
http://www.niob.knaw.nl/researchpages/clevers/index.html
http://www.mdc-berlin.de/ueber_das_mdc/presse/pressemitteilungen/1996/00219c_.htm

Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de/ueber_das_mdc/presse/index.htm

Weitere Berichte zu: Balance Beta-Catenin Dickdarmkrebs Gen Signalpfad Stammzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie

25.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics