Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Entstehung des Orientierungssinns

31.08.2007
Wissenschaftler aus Berlin zeigen in einem theoretischen Modell, wie eine Landkarte im Gehirn entsteht

Zur Orientierung brauchen wir vor allem zwei Informationen: Wo bin ich und in welche Richtung schaue ich gerade? Aus Experimenten an Ratten weiß man, dass diese Informationen im Gehirn sehr direkt und unabhängig voneinander zugänglich sind. Wenige Minuten nachdem die Ratte eine neue Umgebung erkundet hat, haben sich so genannte Ortszellen und Kopfrichtungszellen etabliert.

Ortszellen sind aktiv, wenn sich die Ratte an einem bestimmten Ort aufhält, egal in welche Richtung sie schaut. Kopfrichtungszellen kodieren dagegen, in welche Richtung die Ratte blickt - unabhängig von ihrem Aufenthaltsort. Auch beim Menschen gibt es vermutlich solche und weitere Zelltypen, die spezifisch zur Orientierung dienen. Mathias Franzius, Henning Sprekeler und Laurenz Wiskott, Wissenschaftler an der Humboldt-Universität und am Bernstein Zentrum für Computational Neuroscience Berlin, haben nun ein theoretisches Modell entwickelt, das die Entstehung aller bekannten Orientierungszellen im Gehirn von Ratten und Primaten erklären kann. Die Arbeit wird in der wissenschaftlichen Zeitschrift "PLoS Computational Biology" publiziert.

Das Modell der Berliner Forscher analysiert realistische Bilddaten, die den visuellen Eindruck einer Ratte bei ihrem Gang durch den Käfig wiedergeben. Der Kern ihres Modells ist ein mathematischer Algorithmus namens "Slow Feature Analysis", der die für die Orientierung relevante Information aus den Bilddaten extrahiert. Mit Hilfe dieses Algorithmus lässt das Modell Ortszellen und Kopfrichtungszellen entstehen - ohne dass dies eine Vorgabe des Modells gewesen wäre.

Jeder Rezeptor im Auge erfasst nur einen sehr kleinen Ausschnitt des visuellen Gesamtbildes. Lenken wir die Blickrichtung beispielsweise nur ein wenig nach links, wird jeder einzelne Rezeptor eine ganz andere Information weitergeben als vorher. Während die Sensoren ständig wechselnde Daten liefern, verändern sich die für die Orientierung relevanten Informationen sehr viel langsamer - der Gesamtbildeindruck in diesem Beispiel bleibt fast konstant. Merkmale, die sich nur langsam verändern, können mit Hilfe der Slow Feature Analysis aus den Bilddaten gewonnen werden.

Mit ihrem Modell konnten die Wissenschaftler zeigen, dass mit der Slow Feature Analysis aus der zeitlichen Folge von visuellen Eindrücken, die die Ratte bei ihren Erkundungsgängen erhält, eine Art kognitive Landkarte im Gehirn entstehen kann. Positionen werden in dieser Karte durch Ortszellen und Himmelsrichtungen durch Kopfrichtungszellen wiedergegeben. Erst nach diesem Lernprozess können völlig unterschiedliche visuelle Eindrücke die gleichen Orts- oder Kopfrichtungszellen aktivieren - sitzt die Ratte beispielsweise in der nördlichen Ecke ihres Käfigs, sind die gleichen Ortszellen aktiv, egal ob sie nach Osten oder Westen schaut.

Originalveröffentlichung: Mathias Franzius, Henning Sprekeler und Laurenz Wiskott (2007). Slowness and sparseness lead to place, head direction and spacial view cells. PloS Computational Biology, 31. August 2007

Kontakt:
Prof. Laurenz Wiskott
Institut für Theoretische Biologie
Humboldt-Universität zu Berlin
Invalidenstr. 43
10115 Berlin
Email: l.wiskott@hu-berlin.de
Tel.: 030 2093 8801

Katrin Weigmann | idw
Weitere Informationen:
http://itb.biologie.hu-berlin.de/Research/wiskott_group
http://www.bccn-berlin.de
http://www.bernstein-zentren.de

Weitere Berichte zu: Kopfrichtungszellen Orientierung Ortszellen Ratte

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie