Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Entstehung des Orientierungssinns

31.08.2007
Wissenschaftler aus Berlin zeigen in einem theoretischen Modell, wie eine Landkarte im Gehirn entsteht

Zur Orientierung brauchen wir vor allem zwei Informationen: Wo bin ich und in welche Richtung schaue ich gerade? Aus Experimenten an Ratten weiß man, dass diese Informationen im Gehirn sehr direkt und unabhängig voneinander zugänglich sind. Wenige Minuten nachdem die Ratte eine neue Umgebung erkundet hat, haben sich so genannte Ortszellen und Kopfrichtungszellen etabliert.

Ortszellen sind aktiv, wenn sich die Ratte an einem bestimmten Ort aufhält, egal in welche Richtung sie schaut. Kopfrichtungszellen kodieren dagegen, in welche Richtung die Ratte blickt - unabhängig von ihrem Aufenthaltsort. Auch beim Menschen gibt es vermutlich solche und weitere Zelltypen, die spezifisch zur Orientierung dienen. Mathias Franzius, Henning Sprekeler und Laurenz Wiskott, Wissenschaftler an der Humboldt-Universität und am Bernstein Zentrum für Computational Neuroscience Berlin, haben nun ein theoretisches Modell entwickelt, das die Entstehung aller bekannten Orientierungszellen im Gehirn von Ratten und Primaten erklären kann. Die Arbeit wird in der wissenschaftlichen Zeitschrift "PLoS Computational Biology" publiziert.

Das Modell der Berliner Forscher analysiert realistische Bilddaten, die den visuellen Eindruck einer Ratte bei ihrem Gang durch den Käfig wiedergeben. Der Kern ihres Modells ist ein mathematischer Algorithmus namens "Slow Feature Analysis", der die für die Orientierung relevante Information aus den Bilddaten extrahiert. Mit Hilfe dieses Algorithmus lässt das Modell Ortszellen und Kopfrichtungszellen entstehen - ohne dass dies eine Vorgabe des Modells gewesen wäre.

Jeder Rezeptor im Auge erfasst nur einen sehr kleinen Ausschnitt des visuellen Gesamtbildes. Lenken wir die Blickrichtung beispielsweise nur ein wenig nach links, wird jeder einzelne Rezeptor eine ganz andere Information weitergeben als vorher. Während die Sensoren ständig wechselnde Daten liefern, verändern sich die für die Orientierung relevanten Informationen sehr viel langsamer - der Gesamtbildeindruck in diesem Beispiel bleibt fast konstant. Merkmale, die sich nur langsam verändern, können mit Hilfe der Slow Feature Analysis aus den Bilddaten gewonnen werden.

Mit ihrem Modell konnten die Wissenschaftler zeigen, dass mit der Slow Feature Analysis aus der zeitlichen Folge von visuellen Eindrücken, die die Ratte bei ihren Erkundungsgängen erhält, eine Art kognitive Landkarte im Gehirn entstehen kann. Positionen werden in dieser Karte durch Ortszellen und Himmelsrichtungen durch Kopfrichtungszellen wiedergegeben. Erst nach diesem Lernprozess können völlig unterschiedliche visuelle Eindrücke die gleichen Orts- oder Kopfrichtungszellen aktivieren - sitzt die Ratte beispielsweise in der nördlichen Ecke ihres Käfigs, sind die gleichen Ortszellen aktiv, egal ob sie nach Osten oder Westen schaut.

Originalveröffentlichung: Mathias Franzius, Henning Sprekeler und Laurenz Wiskott (2007). Slowness and sparseness lead to place, head direction and spacial view cells. PloS Computational Biology, 31. August 2007

Kontakt:
Prof. Laurenz Wiskott
Institut für Theoretische Biologie
Humboldt-Universität zu Berlin
Invalidenstr. 43
10115 Berlin
Email: l.wiskott@hu-berlin.de
Tel.: 030 2093 8801

Katrin Weigmann | idw
Weitere Informationen:
http://itb.biologie.hu-berlin.de/Research/wiskott_group
http://www.bccn-berlin.de
http://www.bernstein-zentren.de

Weitere Berichte zu: Kopfrichtungszellen Orientierung Ortszellen Ratte

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics