Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Es geht rund: Zelldynamik

30.08.2007
Starr und reglos? Von wegen: Im Innern lebender Zellen geht es rund. Welche Bewegungen dort stattfinden und wie sogar ganze Zellen "auf Wanderschaft" gehen, der Frage geht der Sonderforschungsbereich (SFB) 629, "Molekulare Zelldynamik: Intrazelluläre und zelluläre Bewegungen" an der Universität Münster nach.

Neben den Fachbereichen Biologie und Medizin ist das münstersche Max-Planck-Institut für molekulare Biomedizin an dem seit 2003 von der Deutschen Forschungsgemeinschaft geförderten Projekt beteiligt.

Die Forscher untersuchen in 15 Teilprojekten die Aufgaben der Zellen, die als "kleinste Einheiten" in lebenden Organismen vielfältige Funktionen erfüllen. Sie richten den Fokus auch auf die Regulation der Kontakte von Zellen untereinander, von Zellformänderungen und von Zellbewegungen im Organismus. Um die Zellstrukturen sichtbar zu machen, ist der Einsatz hochauflösender Mikroskopie nötig. "Alle Arbeitsgruppen bei uns nutzen die ein oder andere Form moderner mikroskopischer Techniken, zum Beispiel Laserscanning- oder Rasterkraftmikroskopie, das ist ein verbindendes Element der verschiedenen Teilprojekte", so SFB-Sprecher Prof. Dr. Christian Klämbt.

Nervenzellen sind der Grundbaustein des Gehirns. Sie bilden spezielle Strukturen aus, die die Kommunikation zwischen den einzelnen Nervenzellen ermöglichen: die so genannten Dendriten, die die Signale empfangen, und die Axone, die sie weiterleiten. Wie diese komplex verschalteten Strukturen während der Entwicklung des embryonalen Nervensystems entstehen, wird gegenwärtig intensiv untersucht. Im SFB werden dafür Nervenzellen verwendet, die aus Ratten oder Mäusen gewonnen und dann in Kultur genommen werden.

Ziel ist es zunächst einmal, die grundlegenden, bisher wenig verstandenen Prozesse aufzuklären, die es ermöglichen, dass ein so komplexes Organ wie ein Gehirn entsteht. Die Hoffnung ist aber auch, langfristig neue Ansätze zur Heilung von Verletzungen des Nervensystems zu finden. "Wir konnten bereits einige zentrale Schaltelemente auf molekularer Ebene identifizieren, die die Bildung von Axonen und Dendriten steuern. Mit Hilfe modernster mikroskopischer Verfahren wollen wir die Aktivität dieser molekularen Schaltelemente direkt in lebenden Zellen untersuchen", beschreibt Prof. Dr. Andreas Püschel das Forschungsvorhaben seiner Arbeitsgruppe.

Die Forscher eines anderen Teilprojekts verwenden die Fruchtfliege Drosophila melanogaster als Modellorganismus für ähnliche Untersuchungen. Sie interessieren sich speziell für die Verknüpfungen zwischen Nervenzellen des Geruchs- und Sehsystems, die bei der Fruchtfliege zwar einfacher aufgebaut als zum Beispiel beim Menschen sind, aber dennoch sehr ähnlich, so dass Rückschlüsse möglich sind. Die Verschaltung der Nervenzellen wird unter anderem durch bestimmte Erkennungsmoleküle ermöglicht, die auf der Zelloberfläche gebildet werden. Sind die Gene defekt, die für die Ausbildung dieser Moleküle verantwortlich sind, funktioniert die Erkennung nicht mehr - die einzelnen Zellen finden ihre "Kommunikationspartner" nicht.

Vom Gendefekt kann man auf die Funktion der Erkennungsmoleküle oder anderer beteiligter Proteine schließen: "Bei einem so genannten Mutagenese-Screen zerstören wir Gene zufällig und überprüfen, wie sich diese Veränderungen in den Erbanlagen auf die Verschaltung der Nervenzellen auswirken", erklärt Projektleiter Dr. Thomas Hummel, Träger des Nachwuchsforschungspreises des Förderkreises der WWU. Neue Methoden ermöglichen zudem die gezielte Ausschaltung von Genen in bestimmten sensorischen Nervenzellen oder machen spezifische Verschaltungen sichtbar. "Fliegen mit einem durch eine Mutation veränderten Nervensystem können auch hinsichtlich ihrer Reaktionen auf bestimmte Duft- oder Lichtreize untersucht werden", so Hummel. Das geänderte Verhalten der Fliegen mit defekten Proteinen und "Fehlschaltungen" gibt dabei Hinweis auf die Funktion der betroffenen Proteine im intakten Tier.

Pilze sind auf zellbiologischer Ebene mit tierischen Organismen vergleichbar aufgebaut. Zum Teil stehen die Pilzzellen dabei vor ähnlichen Herausforderungen wie die Nervenzellen von Drosophila oder anderen Tieren. Der giftige Mutterkorn-Pilz wächst zum Beispiel in den Fruchtknoten der Blütenstände von Roggen oder anderen Getreidepflanzen und bildet fadenförmige Zellen, die in die Leitbündel, also in die Gefäße der Pflanze, einwachsen, um dort Nährstoffe aufzunehmen. Die Pilzzellen müssen dabei ihren Weg zwischen den Pflanzenzellen finden um, ähnlich wie die Nervenzellen, ihr Ziel zu erreichen.

"Der Pilz ist ein Modellsystem für gerichtetes Wachstum in einem Gewebe", erklärt Teilprojektleiter Prof. Dr. Paul Tudzynski. "Pilze sind relativ einfach genetisch und gentechnisch zu analysieren. Wir lernen durch sie viel, was man auf tierische Organismen übertragen kann". Die Forscher haben bestimmte Gene identifiziert, die bei Pflanzen und Tieren eine Rolle bei der Orientierung von Zellen in Geweben spielen.

Auch Bakterienzellen können sich in den Körpern ihrer Wirte orientieren und ihren Weg in unterschiedlichen Geweben finden, so zum Beispiel das Bakterium Bordetella pertussis, das Keuchhusten auslöst, wobei die Abgabe des Pertussis-Toxins eine entscheidende Rolle spielt. Ein SFB-Teilprojekt untersucht unter anderem, wie sich dieses Toxin auf die Zellen der Blut-Hirn-Schranke auswirkt, die das Gehirn vor dem Eindringen von Krankheitserregern aus dem Blut schützt.

"Wir gehen der Frage nach, ob möglicherweise eine nicht erkannte Keuchhusten-Infektion bei Neugeborenen die Wahrscheinlichkeit einer akuten bakteriellen Hirnhautentzündung erhöht," gibt Prof. Dr. Alexander Schmidt Einblick in die aktuelle Forschung: Experimente am Zellkultur-Modell deuten darauf hin, dass die Bakterienzellen die Zellbarriere der Blut-Hirn-Schranke durch das Pertussis-Toxin durchlässiger werden lassen für Immunzellen und offenbar auch besonders für solche Bakterien, die die Hirnhautentzündung auslösen. Ob diese erhöhte Durchlässigkeit auch im lebenden Organismus auftritt, ist aber bislang nicht bekannt - diese Frage ist eine weitere Herausforderung für die Forscher, die das komplexe Zusammenspiel der Zellen enträtseln wollen.

Dr. Christina Heimken | idw
Weitere Informationen:
http://sfb629.uni-muenster.de/

Weitere Berichte zu: Gen Nervensystem Nervenzelle Organismus Protein Verschaltung Zelldynamik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der erste Blick auf ein einzelnes Protein
18.01.2017 | Max-Planck-Institut für Festkörperforschung, Stuttgart

nachricht Unterschiedliche Rekombinationsraten halten besonders egoistische Gene im Zaum
18.01.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik