Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Es geht rund: Zelldynamik

30.08.2007
Starr und reglos? Von wegen: Im Innern lebender Zellen geht es rund. Welche Bewegungen dort stattfinden und wie sogar ganze Zellen "auf Wanderschaft" gehen, der Frage geht der Sonderforschungsbereich (SFB) 629, "Molekulare Zelldynamik: Intrazelluläre und zelluläre Bewegungen" an der Universität Münster nach.

Neben den Fachbereichen Biologie und Medizin ist das münstersche Max-Planck-Institut für molekulare Biomedizin an dem seit 2003 von der Deutschen Forschungsgemeinschaft geförderten Projekt beteiligt.

Die Forscher untersuchen in 15 Teilprojekten die Aufgaben der Zellen, die als "kleinste Einheiten" in lebenden Organismen vielfältige Funktionen erfüllen. Sie richten den Fokus auch auf die Regulation der Kontakte von Zellen untereinander, von Zellformänderungen und von Zellbewegungen im Organismus. Um die Zellstrukturen sichtbar zu machen, ist der Einsatz hochauflösender Mikroskopie nötig. "Alle Arbeitsgruppen bei uns nutzen die ein oder andere Form moderner mikroskopischer Techniken, zum Beispiel Laserscanning- oder Rasterkraftmikroskopie, das ist ein verbindendes Element der verschiedenen Teilprojekte", so SFB-Sprecher Prof. Dr. Christian Klämbt.

Nervenzellen sind der Grundbaustein des Gehirns. Sie bilden spezielle Strukturen aus, die die Kommunikation zwischen den einzelnen Nervenzellen ermöglichen: die so genannten Dendriten, die die Signale empfangen, und die Axone, die sie weiterleiten. Wie diese komplex verschalteten Strukturen während der Entwicklung des embryonalen Nervensystems entstehen, wird gegenwärtig intensiv untersucht. Im SFB werden dafür Nervenzellen verwendet, die aus Ratten oder Mäusen gewonnen und dann in Kultur genommen werden.

Ziel ist es zunächst einmal, die grundlegenden, bisher wenig verstandenen Prozesse aufzuklären, die es ermöglichen, dass ein so komplexes Organ wie ein Gehirn entsteht. Die Hoffnung ist aber auch, langfristig neue Ansätze zur Heilung von Verletzungen des Nervensystems zu finden. "Wir konnten bereits einige zentrale Schaltelemente auf molekularer Ebene identifizieren, die die Bildung von Axonen und Dendriten steuern. Mit Hilfe modernster mikroskopischer Verfahren wollen wir die Aktivität dieser molekularen Schaltelemente direkt in lebenden Zellen untersuchen", beschreibt Prof. Dr. Andreas Püschel das Forschungsvorhaben seiner Arbeitsgruppe.

Die Forscher eines anderen Teilprojekts verwenden die Fruchtfliege Drosophila melanogaster als Modellorganismus für ähnliche Untersuchungen. Sie interessieren sich speziell für die Verknüpfungen zwischen Nervenzellen des Geruchs- und Sehsystems, die bei der Fruchtfliege zwar einfacher aufgebaut als zum Beispiel beim Menschen sind, aber dennoch sehr ähnlich, so dass Rückschlüsse möglich sind. Die Verschaltung der Nervenzellen wird unter anderem durch bestimmte Erkennungsmoleküle ermöglicht, die auf der Zelloberfläche gebildet werden. Sind die Gene defekt, die für die Ausbildung dieser Moleküle verantwortlich sind, funktioniert die Erkennung nicht mehr - die einzelnen Zellen finden ihre "Kommunikationspartner" nicht.

Vom Gendefekt kann man auf die Funktion der Erkennungsmoleküle oder anderer beteiligter Proteine schließen: "Bei einem so genannten Mutagenese-Screen zerstören wir Gene zufällig und überprüfen, wie sich diese Veränderungen in den Erbanlagen auf die Verschaltung der Nervenzellen auswirken", erklärt Projektleiter Dr. Thomas Hummel, Träger des Nachwuchsforschungspreises des Förderkreises der WWU. Neue Methoden ermöglichen zudem die gezielte Ausschaltung von Genen in bestimmten sensorischen Nervenzellen oder machen spezifische Verschaltungen sichtbar. "Fliegen mit einem durch eine Mutation veränderten Nervensystem können auch hinsichtlich ihrer Reaktionen auf bestimmte Duft- oder Lichtreize untersucht werden", so Hummel. Das geänderte Verhalten der Fliegen mit defekten Proteinen und "Fehlschaltungen" gibt dabei Hinweis auf die Funktion der betroffenen Proteine im intakten Tier.

Pilze sind auf zellbiologischer Ebene mit tierischen Organismen vergleichbar aufgebaut. Zum Teil stehen die Pilzzellen dabei vor ähnlichen Herausforderungen wie die Nervenzellen von Drosophila oder anderen Tieren. Der giftige Mutterkorn-Pilz wächst zum Beispiel in den Fruchtknoten der Blütenstände von Roggen oder anderen Getreidepflanzen und bildet fadenförmige Zellen, die in die Leitbündel, also in die Gefäße der Pflanze, einwachsen, um dort Nährstoffe aufzunehmen. Die Pilzzellen müssen dabei ihren Weg zwischen den Pflanzenzellen finden um, ähnlich wie die Nervenzellen, ihr Ziel zu erreichen.

"Der Pilz ist ein Modellsystem für gerichtetes Wachstum in einem Gewebe", erklärt Teilprojektleiter Prof. Dr. Paul Tudzynski. "Pilze sind relativ einfach genetisch und gentechnisch zu analysieren. Wir lernen durch sie viel, was man auf tierische Organismen übertragen kann". Die Forscher haben bestimmte Gene identifiziert, die bei Pflanzen und Tieren eine Rolle bei der Orientierung von Zellen in Geweben spielen.

Auch Bakterienzellen können sich in den Körpern ihrer Wirte orientieren und ihren Weg in unterschiedlichen Geweben finden, so zum Beispiel das Bakterium Bordetella pertussis, das Keuchhusten auslöst, wobei die Abgabe des Pertussis-Toxins eine entscheidende Rolle spielt. Ein SFB-Teilprojekt untersucht unter anderem, wie sich dieses Toxin auf die Zellen der Blut-Hirn-Schranke auswirkt, die das Gehirn vor dem Eindringen von Krankheitserregern aus dem Blut schützt.

"Wir gehen der Frage nach, ob möglicherweise eine nicht erkannte Keuchhusten-Infektion bei Neugeborenen die Wahrscheinlichkeit einer akuten bakteriellen Hirnhautentzündung erhöht," gibt Prof. Dr. Alexander Schmidt Einblick in die aktuelle Forschung: Experimente am Zellkultur-Modell deuten darauf hin, dass die Bakterienzellen die Zellbarriere der Blut-Hirn-Schranke durch das Pertussis-Toxin durchlässiger werden lassen für Immunzellen und offenbar auch besonders für solche Bakterien, die die Hirnhautentzündung auslösen. Ob diese erhöhte Durchlässigkeit auch im lebenden Organismus auftritt, ist aber bislang nicht bekannt - diese Frage ist eine weitere Herausforderung für die Forscher, die das komplexe Zusammenspiel der Zellen enträtseln wollen.

Dr. Christina Heimken | idw
Weitere Informationen:
http://sfb629.uni-muenster.de/

Weitere Berichte zu: Gen Nervensystem Nervenzelle Organismus Protein Verschaltung Zelldynamik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie