Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Es geht rund: Zelldynamik

30.08.2007
Starr und reglos? Von wegen: Im Innern lebender Zellen geht es rund. Welche Bewegungen dort stattfinden und wie sogar ganze Zellen "auf Wanderschaft" gehen, der Frage geht der Sonderforschungsbereich (SFB) 629, "Molekulare Zelldynamik: Intrazelluläre und zelluläre Bewegungen" an der Universität Münster nach.

Neben den Fachbereichen Biologie und Medizin ist das münstersche Max-Planck-Institut für molekulare Biomedizin an dem seit 2003 von der Deutschen Forschungsgemeinschaft geförderten Projekt beteiligt.

Die Forscher untersuchen in 15 Teilprojekten die Aufgaben der Zellen, die als "kleinste Einheiten" in lebenden Organismen vielfältige Funktionen erfüllen. Sie richten den Fokus auch auf die Regulation der Kontakte von Zellen untereinander, von Zellformänderungen und von Zellbewegungen im Organismus. Um die Zellstrukturen sichtbar zu machen, ist der Einsatz hochauflösender Mikroskopie nötig. "Alle Arbeitsgruppen bei uns nutzen die ein oder andere Form moderner mikroskopischer Techniken, zum Beispiel Laserscanning- oder Rasterkraftmikroskopie, das ist ein verbindendes Element der verschiedenen Teilprojekte", so SFB-Sprecher Prof. Dr. Christian Klämbt.

Nervenzellen sind der Grundbaustein des Gehirns. Sie bilden spezielle Strukturen aus, die die Kommunikation zwischen den einzelnen Nervenzellen ermöglichen: die so genannten Dendriten, die die Signale empfangen, und die Axone, die sie weiterleiten. Wie diese komplex verschalteten Strukturen während der Entwicklung des embryonalen Nervensystems entstehen, wird gegenwärtig intensiv untersucht. Im SFB werden dafür Nervenzellen verwendet, die aus Ratten oder Mäusen gewonnen und dann in Kultur genommen werden.

Ziel ist es zunächst einmal, die grundlegenden, bisher wenig verstandenen Prozesse aufzuklären, die es ermöglichen, dass ein so komplexes Organ wie ein Gehirn entsteht. Die Hoffnung ist aber auch, langfristig neue Ansätze zur Heilung von Verletzungen des Nervensystems zu finden. "Wir konnten bereits einige zentrale Schaltelemente auf molekularer Ebene identifizieren, die die Bildung von Axonen und Dendriten steuern. Mit Hilfe modernster mikroskopischer Verfahren wollen wir die Aktivität dieser molekularen Schaltelemente direkt in lebenden Zellen untersuchen", beschreibt Prof. Dr. Andreas Püschel das Forschungsvorhaben seiner Arbeitsgruppe.

Die Forscher eines anderen Teilprojekts verwenden die Fruchtfliege Drosophila melanogaster als Modellorganismus für ähnliche Untersuchungen. Sie interessieren sich speziell für die Verknüpfungen zwischen Nervenzellen des Geruchs- und Sehsystems, die bei der Fruchtfliege zwar einfacher aufgebaut als zum Beispiel beim Menschen sind, aber dennoch sehr ähnlich, so dass Rückschlüsse möglich sind. Die Verschaltung der Nervenzellen wird unter anderem durch bestimmte Erkennungsmoleküle ermöglicht, die auf der Zelloberfläche gebildet werden. Sind die Gene defekt, die für die Ausbildung dieser Moleküle verantwortlich sind, funktioniert die Erkennung nicht mehr - die einzelnen Zellen finden ihre "Kommunikationspartner" nicht.

Vom Gendefekt kann man auf die Funktion der Erkennungsmoleküle oder anderer beteiligter Proteine schließen: "Bei einem so genannten Mutagenese-Screen zerstören wir Gene zufällig und überprüfen, wie sich diese Veränderungen in den Erbanlagen auf die Verschaltung der Nervenzellen auswirken", erklärt Projektleiter Dr. Thomas Hummel, Träger des Nachwuchsforschungspreises des Förderkreises der WWU. Neue Methoden ermöglichen zudem die gezielte Ausschaltung von Genen in bestimmten sensorischen Nervenzellen oder machen spezifische Verschaltungen sichtbar. "Fliegen mit einem durch eine Mutation veränderten Nervensystem können auch hinsichtlich ihrer Reaktionen auf bestimmte Duft- oder Lichtreize untersucht werden", so Hummel. Das geänderte Verhalten der Fliegen mit defekten Proteinen und "Fehlschaltungen" gibt dabei Hinweis auf die Funktion der betroffenen Proteine im intakten Tier.

Pilze sind auf zellbiologischer Ebene mit tierischen Organismen vergleichbar aufgebaut. Zum Teil stehen die Pilzzellen dabei vor ähnlichen Herausforderungen wie die Nervenzellen von Drosophila oder anderen Tieren. Der giftige Mutterkorn-Pilz wächst zum Beispiel in den Fruchtknoten der Blütenstände von Roggen oder anderen Getreidepflanzen und bildet fadenförmige Zellen, die in die Leitbündel, also in die Gefäße der Pflanze, einwachsen, um dort Nährstoffe aufzunehmen. Die Pilzzellen müssen dabei ihren Weg zwischen den Pflanzenzellen finden um, ähnlich wie die Nervenzellen, ihr Ziel zu erreichen.

"Der Pilz ist ein Modellsystem für gerichtetes Wachstum in einem Gewebe", erklärt Teilprojektleiter Prof. Dr. Paul Tudzynski. "Pilze sind relativ einfach genetisch und gentechnisch zu analysieren. Wir lernen durch sie viel, was man auf tierische Organismen übertragen kann". Die Forscher haben bestimmte Gene identifiziert, die bei Pflanzen und Tieren eine Rolle bei der Orientierung von Zellen in Geweben spielen.

Auch Bakterienzellen können sich in den Körpern ihrer Wirte orientieren und ihren Weg in unterschiedlichen Geweben finden, so zum Beispiel das Bakterium Bordetella pertussis, das Keuchhusten auslöst, wobei die Abgabe des Pertussis-Toxins eine entscheidende Rolle spielt. Ein SFB-Teilprojekt untersucht unter anderem, wie sich dieses Toxin auf die Zellen der Blut-Hirn-Schranke auswirkt, die das Gehirn vor dem Eindringen von Krankheitserregern aus dem Blut schützt.

"Wir gehen der Frage nach, ob möglicherweise eine nicht erkannte Keuchhusten-Infektion bei Neugeborenen die Wahrscheinlichkeit einer akuten bakteriellen Hirnhautentzündung erhöht," gibt Prof. Dr. Alexander Schmidt Einblick in die aktuelle Forschung: Experimente am Zellkultur-Modell deuten darauf hin, dass die Bakterienzellen die Zellbarriere der Blut-Hirn-Schranke durch das Pertussis-Toxin durchlässiger werden lassen für Immunzellen und offenbar auch besonders für solche Bakterien, die die Hirnhautentzündung auslösen. Ob diese erhöhte Durchlässigkeit auch im lebenden Organismus auftritt, ist aber bislang nicht bekannt - diese Frage ist eine weitere Herausforderung für die Forscher, die das komplexe Zusammenspiel der Zellen enträtseln wollen.

Dr. Christina Heimken | idw
Weitere Informationen:
http://sfb629.uni-muenster.de/

Weitere Berichte zu: Gen Nervensystem Nervenzelle Organismus Protein Verschaltung Zelldynamik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Treibjagd in der Petrischale
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Dinner in the Dark – ein delikates Wechselspiel der Mikroorganismen
24.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie