Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entscheidender Schritt zum Verständnis der Zellmechanik

28.08.2007
Forscher der Technischen Universität München (TUM) und der Ludwig-Maximilians-Universität München (LMU) sind dem physikalischen Verständnis der Fortbewegung und Zellteilung von Gewebe-Zellen einen entscheidenden Schritt näher gekommen.

Basierend auf Erkenntnissen über einzelne Bausteine des Grundgerüsts von Zellen ist es Wissenschaftlern an TUM und LMU gelungen, das physikalische Verhalten des "Zytoskeletts" zu erforschen und mittels theoretischer Berechnungen vorherzusagen. Diese Forschungsarbeit bildet eine wichtige Grundlage für das Verständnis der mechanischen Eigenschaften von Gewebezellen.

Für viele Prozesse wie die der Zellteilung und Fortbewegung von Zellen haben die mechanischen Eigenschaften eine herausragende Bedeutung. All diese Prozesse spielen zum Beispiel bei der Entstehung von Organen im Embryonalstadium von Lebewesen eine wichtige Rolle. Mögliche praktische Anwendungen der neuen Erkenntnisse können die Entwicklung neuer Materialien oder die Verbesserung medizinischer Untersuchungsmethoden sein.

Das Zytoskelett als Grundgerüst und Antriebsmotor von Zellen

Den mechanischen Aufbau von tierischen Zellen kann man sich wie den eines Luftschiffs vorstellen. Die äußere Hülle, die Zellmembran, wird im Inneren der Zelle von einem Gerüst getragen und stabilisiert. Dieses Gerüst bezeichnet man als Zytoskelett. Es besteht aus nur wenige Nanometer dünnen Fasern, die miteinander zu einem Netz verwoben sind. Als Baustoff dienen so genannte Bio-Polymere. Diese weisen wie die Polymere in gewöhnlichen Kunststoffen eine kettenförmige Struktur auf. Das elastische Verhalten von Biopolymeren lässt sich mit ähnlichen physikalischen Modellen wie das der Kunststoff-Polymere beschreiben.

Das Zytoskelett einer Zelle gibt ihr Stabilität gegen Krafteinwirkung von außen und bleibt dabei elastisch und reißfest. Aber es spielt auch eine entscheidende Rolle bei der Fortbewegung der Zelle. Hierbei verlagert sie die Bausteine ihres Zytoskeletts Schritt für Schritt nach vorne, in Fortbewegungsrichtung entsteht vorübergehend ein Fortsatz, wie ein Arm. Dafür wird in Gegenrichtung Material abgebaut. Durch diese Umbaumaßnahme bewegt sich das Zytoskelett insgesamt nach vorne, und mit ihm die ganze Zelle. Eine derartige Fortbewegung von Zellen findet zum Beispiel statt, wenn sich bei einem Embryo Organe entwickeln oder Zellen bei der Wundheilung an vorbestimmte Orte wandern. Das Zytoskelett ist somit hochdynamisch und verändert ständig seine Struktur - ganz im Gegensatz zu einem Luftschiff oder sonstigen technischen Werkstoffen die von Menschen entwickelt wurden.

Bündelbildung als Voraussetzung für die Zellbewegung

Das Zytoskelett einer Zelle muss in Fortbewegungsrichtung stabil genug sein, um sich in dem umgebenden Gewebe durchzusetzen. Diese Stabilität kann nur erreicht werden, wenn die einzelnen Biopolymer-Fasern zu Bündeln verklebt sind - vereint sind die Elemente stärker. Eine zentrale Rolle spielt dabei der "Klebstoff", der für diese Bündelung sorgt, so zum Beispiel das Bindeprotein Fascin. Ausgehend von dem elastischen Verhalten einzelner Biopolymer-Bündel ist es der Garchinger Forschergruppe um Prof. Andreas Bausch an der TU München nun gelungen, die Mechanik von solch einem Netzwerk mit physikalischen Methoden zu erklären. Eine wichtige Grundlage waren dabei die theoretischen Berechnungen der Arbeitsgruppe von Prof. Erwin Frey von der LMU. Beide Forschergruppen kooperieren eng im Rahmen des Exzellenzclusters Nanosystems Initiative Munich (NIM).

Die Menge des Klebstoffs ist entscheidend

Als Testsubstanz haben die Forscher aus dem Biopolymer Aktin und dem Bindeprotein Fascin ein sehr kontrolliertes Modellsystem aufgebaut und auf die mechanischen und strukturellen Eigenschaften hin untersucht. Die Rekonstruierung dieser Bausteine in solch einem Modellsystem stellt eine große Herausforderung dar - Untersuchungen an diesen weichen Proben erfordern besonders hochempfindliche Techniken, die kleinste Verzerrungen detektieren können und Nanometerstrukturen genauestens auflösen können.

Wichtigstes Ergebnis: abhängig von der Konzentration des "Klebstoffs" Fascin kann das Biopolymer-Netzwerk zwei strukturelle Zustände annehmen. Im ersten Zustand liegen noch keine Aktin-Bündel vor, und eine Verformung wirkt sich gleichermaßen, "affin", in allen Bereichen des Netzwerks aus. Es können allerdings keine stabilen Strukturen ausgebildet werden. Im zweiten Zustand dagegen wird eine Verformung nicht mehr gleichmäßig auf alle Regionen des Netzwerks übertragen, man spricht von "nicht-affinen" Verformungen. Diese Art der Verformung wurde bisher nur vorhergesagt und konnte nun erstmals beobachtet und beschrieben werden. Ursache hierfür ist die veränderte Struktur; das Netzwerk besteht nun ausschließlich aus stabileren Aktin-Bündeln. Diese stabilen Bündel werden jedoch erst gebildet, sobald eine bestimmte Konzentration des Klebstoffs Fascin überschritten wird. Dann sind so viele Verknüpfungen unter den Fasern ausgebildet, dass sich Bündel bilden. Nur so können stabile Strukturen entstehen, wie zum Beispiel die Fortsätze, mit deren Hilfe sich die Zelle fortbewegt. So können Zellen ganz geschickt auf biochemischem Wege die Mechanik lokal auf ihre Bedürfnisse einstellen.

Vom Verständnis der Zellmechanik zu neuen Materialien, Diagnosemethoden und Therapien

Den Wissenschaftlern ist es gelungen, ausgehend vom elastischen Verhalten einzelner Aktin-Bündel das Verhalten eines komplexen Netzwerks aus diesen Fasern zu erklären. Die Möglichkeit erstmals makroskopische Eigenschaften solcher Netzwerke mit der Verformung auf der Nanometerskala erklären zu können, stellt einen wesentlichen Schritt in den Bemühungen dar, funktionale Module von Zellen unter Laborbedingungen nachzubilden und quantitativ zu verstehen.
Dies führt zu einem grundlegenden Verständnis des mechanischen Verhaltens tierischer Gewebezellen und ihrer Fortbewegungsmechanismen. Diese sind nicht nur in vielen physiologischen Prozessen, wie Zellteilung oder Wundheilung von größter Bedeutung, sondern auch für die Differenzierung von Stammzellen.

Gleichzeitig eröffnen sich damit ganz neue Möglichkeiten zur Herstellung neuartiger Werkstoffe anhand des biologischen Vorbildes, etwa für Implantate oder Funktionswerkstoffe mit herausragenden mechanischen Eigenschaften. Auf der anderen Seite können von dem genauen Verständnis der Zellmechanik auch die medizinische Diagnostik und die therapeutische Beeinflussung krankhafter Prozesse im Körper profitieren.

Originalveröffentlichung: Mechanics of bundled semiflexible polymer networks, O. Lieleg, M. M. A. E. Claessens, C. Heussinger, E. Frey, A. R. Bausch, Physical Review Letters Vol. 99, No. 8 (2007)

Kontakt:

Prof. Dr. Andreas Bausch
Technische Universität München
Physik-Department
James-Franck-Straße
D-85748 Garching
Tel.: 089 / 289-12480
E-Mail: abausch@ph.tum.de
Dr. Peter Sonntag
Nanosystems Initiative Munich (NIM)
Presse- und Öffentlichkeitsarbeit
Schellingstraße 4
D-80799 München, Germany
Tel.: 089 / 2180-5091
E-Mail: peter.sonntag@lmu.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.nano-initiative-munich.de
http://www.tu-muenchen.de/

Weitere Berichte zu: Fascin Verformung Zelle Zellmechanik Zytoskelett

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit