Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnelles Denken: Teamarbeit in Nervenzellen

24.08.2007
Individualisten sind die Membranproteine von Nervenzellen eher selten, Zusammenarbeit wird großgeschrieben. Göttinger Forscher des Max-Planck-Instituts für biophysikalische Chemie haben einen neuen Mechanismus herausgefunden, wie sich diese Proteine aktiv zu Gruppen zusammenschließen. Dies könnte ein entscheidender Trick der Natur sein, dass Denkprozesse im Gehirn kontrollierter - und damit schneller ablaufen. (Science, 24. August 2007)

Nervenzellen kommunizieren miteinander über so genannte Synapsen, an denen zwei benachbarte Zellen einen Kontakt ausbilden. Die "sendende" Zelle produziert winzige Bläschen ("Vesikel") mit Botenstoffen. Diese verschmelzen mit der Membran und setzen dabei ihre chemischen Botenstoffe frei, wodurch die "empfangende" Nachbarzelle aktiviert wird.


Das virtuelle Modell zeigt den Aufbau der Syntaxin-1-Proteincluster. Sie sind in der Membran einer Nervenzelle verankert und ragen weit ins Innere der Zelle. Einzelne Syntaxin-1-Proteine wechseln zwischen den verschiedenen Clustern hin und her. Bild: Rammner, Kutzner / MPIbpc

Vermittelt wird diese Verschmelzung durch SNARE-Proteine, die auf der Nervenzellmembran sitzen. Für diese Aufgabe organisieren sie sich in Gruppen, auch Cluster genannt. Wie sich die einzelnen Proteine jedoch zu einer Gruppe zusammenfinden, darüber war bis jetzt nur wenig bekannt.

Bisher wurde angenommen, dass die Membranproteine dabei auf die Hilfe fremder Proteine oder Lipide angewiesen sind. "Wir konnten nun zeigen, dass sich die Membranproteine vielmehr selbst organisieren, indem sie miteinander wechselwirken", erklärt Projektleiter Thorsten Lang vom Max-Planck-Institut für biophysikalische Chemie in Göttingen. "Als molekulare Plattformen stehen sie bereit, damit Vesikel schnell andocken und dadurch Signale rasch weitergeleitet werden können".

Zu diesem überraschenden Ergebnis gelangten die Forscher, indem sie unterschiedliche Methoden und Ansätze kombinierten, denn so ohne weiteres lassen sich die SNARE-Proteine in Aktion nicht beobachten. "Uns hat besonders interessiert, was die Proteine bewegt, sich zusammen zu tun, und wie flexibel diese Cluster hinsichtlich der Anzahl ihrer Proteine sind", erläutert Thorsten Lang. Dazu haben sich die Wissenschaftler das Verhalten eines bestimmten SNARE-Proteins, des Syntaxin-1, genauer angeschaut.

Etwa 1000 Syntaxin-1-Cluster passen auf die Breite eines Haares

Doch sind Syntaxin-1-Cluster in der Zelle so klein und zahlreich, dass man sie unter einem gewöhnlichen Lichtmikroskop nicht einzeln ausmachen kann. Erst mit Hilfe der am Institut entwickelten ultra-hochauflösenden STED-Mikroskopie konnten die Wissenschaftler die einzelnen Syntaxin-1-Büschel sehen und ihre Größe bestimmen - ein Cluster misst gerade ein Tausendstel des Durchmessers eines einzelnen Haares. Durch Kombination von Experiment und Computer-Simulation konnten die Forscher schließlich auch die Anzahl der Proteine im Cluster genau bestimmen. Dazu haben sie zunächst experimentell die Beweglichkeit der Syntaxin-1-Proteine zwischen einzelnen Clustern gemessen. Führten die Wissenschaftler dann Computer-Simulationen mit unterschiedlicher Proteinanzahl pro Cluster durch und verglichen diese mit der gemessenen Beweglichkeit der Proteine im Experiment, so stimmten Experiment und Simulation nur dann überein, wenn sich im Mittel 75 Syntaxine pro Cluster zusammenballten. Um diese 75 Syntaxine auf nur einem Tausendstel des Durchmessers eines Haares unterzubringen, müssen sie damit äußerst dicht gepackt sein.

Einzelne Proteine wandern hin und her

Allerdings sind nicht alle Syntaxin-1-Proteine in Clustern organisiert. Etwa ein Fünftel der Syntaxin-1-Proteine wechselt zwischen unterschiedlichen Proteingruppen in der Membran hin und her. Ob und welche Funktion sie haben, ist noch ungeklärt. Doch sind es vermutlich die Proteincluster, die schnelles Denken ermöglichen. Die Göttinger Forscher wollen nun in Zukunft herausfinden, wie sich das Team aus Proteinen innerhalb des Syntaxin-1-Clusters die Informationsweiterleitung aufteilt.

Die neuen Erkenntnisse haben noch einen interessanten Nebeneffekt. Die wichtige Funktion der SNARE-Proteine in Nervenzellen macht sie zu einem idealen Angriffspunkt für Nervengifte wie die Botulinus-Neurotoxine, kurz Botox genannt. Diese schneiden Syntaxine ab, was direkt auch die Clusterbildung dieser Proteine verhindern würde. Die Arbeiten der Wissenschaftler tragen dazu bei, die Wirkungsweise dieser Nervengifte genauer aufzuklären, so dass diese auch zu unserem Nutzen angewendet werden können. Botox wird bereits erfolgreich bei der Behandlung von Spasmen eingesetzt. In feiner Dosierung werden die Nervenleitungen dazu an der gewünschten Stelle blockiert und dadurch die Muskelspannungen gelöst. Auch die eine oder andere Hautfalte lässt sich auf diese Weise glätten.

Originalveröffentlichung:
Jochen J. Sieber, Katrin I. Willig, Carsten Kutzner, Claas Gerding-Reimers, Benjamin Harke, Gerald Donnert, Burkhard Rammner, Christian Eggeling, Stefan W. Hell, Helmut Grubmüller und Thorsten Lang: Anatomy and Dynamics of a Supramolecular Membrane Protein Cluster. Science 317 (24. August 2007)
Weitere Informationen:
Dr. Thorsten Lang, Max-Planck-Institut für biophysikalische Chemie, Abt. Neurobiologie, Am Faßberg 11, 37077 Göttingen, Tel: 0551 201-1795, Fax: -1499,

eMail: tlang@mpibpc.mpg.de

Dr. Carmen Rotte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpibpc.mpg.de/
http://www.mpibpc.mpg.de/groups/pr/PR/2007/07_26/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung
26.04.2017 | Universität Ulm

nachricht Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt
26.04.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ballungsräume Europas

26.04.2017 | Veranstaltungsnachrichten

Rittal mit neuer Push-in-Leiteranschlussklemme - Kontakte im Handumdrehen

26.04.2017 | HANNOVER MESSE

Plastik – nicht nur Müll

26.04.2017 | Ökologie Umwelt- Naturschutz