Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnelles Denken: Teamarbeit in Nervenzellen

24.08.2007
Individualisten sind die Membranproteine von Nervenzellen eher selten, Zusammenarbeit wird großgeschrieben. Göttinger Forscher des Max-Planck-Instituts für biophysikalische Chemie haben einen neuen Mechanismus herausgefunden, wie sich diese Proteine aktiv zu Gruppen zusammenschließen. Dies könnte ein entscheidender Trick der Natur sein, dass Denkprozesse im Gehirn kontrollierter - und damit schneller ablaufen. (Science, 24. August 2007)

Nervenzellen kommunizieren miteinander über so genannte Synapsen, an denen zwei benachbarte Zellen einen Kontakt ausbilden. Die "sendende" Zelle produziert winzige Bläschen ("Vesikel") mit Botenstoffen. Diese verschmelzen mit der Membran und setzen dabei ihre chemischen Botenstoffe frei, wodurch die "empfangende" Nachbarzelle aktiviert wird.


Das virtuelle Modell zeigt den Aufbau der Syntaxin-1-Proteincluster. Sie sind in der Membran einer Nervenzelle verankert und ragen weit ins Innere der Zelle. Einzelne Syntaxin-1-Proteine wechseln zwischen den verschiedenen Clustern hin und her. Bild: Rammner, Kutzner / MPIbpc

Vermittelt wird diese Verschmelzung durch SNARE-Proteine, die auf der Nervenzellmembran sitzen. Für diese Aufgabe organisieren sie sich in Gruppen, auch Cluster genannt. Wie sich die einzelnen Proteine jedoch zu einer Gruppe zusammenfinden, darüber war bis jetzt nur wenig bekannt.

Bisher wurde angenommen, dass die Membranproteine dabei auf die Hilfe fremder Proteine oder Lipide angewiesen sind. "Wir konnten nun zeigen, dass sich die Membranproteine vielmehr selbst organisieren, indem sie miteinander wechselwirken", erklärt Projektleiter Thorsten Lang vom Max-Planck-Institut für biophysikalische Chemie in Göttingen. "Als molekulare Plattformen stehen sie bereit, damit Vesikel schnell andocken und dadurch Signale rasch weitergeleitet werden können".

Zu diesem überraschenden Ergebnis gelangten die Forscher, indem sie unterschiedliche Methoden und Ansätze kombinierten, denn so ohne weiteres lassen sich die SNARE-Proteine in Aktion nicht beobachten. "Uns hat besonders interessiert, was die Proteine bewegt, sich zusammen zu tun, und wie flexibel diese Cluster hinsichtlich der Anzahl ihrer Proteine sind", erläutert Thorsten Lang. Dazu haben sich die Wissenschaftler das Verhalten eines bestimmten SNARE-Proteins, des Syntaxin-1, genauer angeschaut.

Etwa 1000 Syntaxin-1-Cluster passen auf die Breite eines Haares

Doch sind Syntaxin-1-Cluster in der Zelle so klein und zahlreich, dass man sie unter einem gewöhnlichen Lichtmikroskop nicht einzeln ausmachen kann. Erst mit Hilfe der am Institut entwickelten ultra-hochauflösenden STED-Mikroskopie konnten die Wissenschaftler die einzelnen Syntaxin-1-Büschel sehen und ihre Größe bestimmen - ein Cluster misst gerade ein Tausendstel des Durchmessers eines einzelnen Haares. Durch Kombination von Experiment und Computer-Simulation konnten die Forscher schließlich auch die Anzahl der Proteine im Cluster genau bestimmen. Dazu haben sie zunächst experimentell die Beweglichkeit der Syntaxin-1-Proteine zwischen einzelnen Clustern gemessen. Führten die Wissenschaftler dann Computer-Simulationen mit unterschiedlicher Proteinanzahl pro Cluster durch und verglichen diese mit der gemessenen Beweglichkeit der Proteine im Experiment, so stimmten Experiment und Simulation nur dann überein, wenn sich im Mittel 75 Syntaxine pro Cluster zusammenballten. Um diese 75 Syntaxine auf nur einem Tausendstel des Durchmessers eines Haares unterzubringen, müssen sie damit äußerst dicht gepackt sein.

Einzelne Proteine wandern hin und her

Allerdings sind nicht alle Syntaxin-1-Proteine in Clustern organisiert. Etwa ein Fünftel der Syntaxin-1-Proteine wechselt zwischen unterschiedlichen Proteingruppen in der Membran hin und her. Ob und welche Funktion sie haben, ist noch ungeklärt. Doch sind es vermutlich die Proteincluster, die schnelles Denken ermöglichen. Die Göttinger Forscher wollen nun in Zukunft herausfinden, wie sich das Team aus Proteinen innerhalb des Syntaxin-1-Clusters die Informationsweiterleitung aufteilt.

Die neuen Erkenntnisse haben noch einen interessanten Nebeneffekt. Die wichtige Funktion der SNARE-Proteine in Nervenzellen macht sie zu einem idealen Angriffspunkt für Nervengifte wie die Botulinus-Neurotoxine, kurz Botox genannt. Diese schneiden Syntaxine ab, was direkt auch die Clusterbildung dieser Proteine verhindern würde. Die Arbeiten der Wissenschaftler tragen dazu bei, die Wirkungsweise dieser Nervengifte genauer aufzuklären, so dass diese auch zu unserem Nutzen angewendet werden können. Botox wird bereits erfolgreich bei der Behandlung von Spasmen eingesetzt. In feiner Dosierung werden die Nervenleitungen dazu an der gewünschten Stelle blockiert und dadurch die Muskelspannungen gelöst. Auch die eine oder andere Hautfalte lässt sich auf diese Weise glätten.

Originalveröffentlichung:
Jochen J. Sieber, Katrin I. Willig, Carsten Kutzner, Claas Gerding-Reimers, Benjamin Harke, Gerald Donnert, Burkhard Rammner, Christian Eggeling, Stefan W. Hell, Helmut Grubmüller und Thorsten Lang: Anatomy and Dynamics of a Supramolecular Membrane Protein Cluster. Science 317 (24. August 2007)
Weitere Informationen:
Dr. Thorsten Lang, Max-Planck-Institut für biophysikalische Chemie, Abt. Neurobiologie, Am Faßberg 11, 37077 Göttingen, Tel: 0551 201-1795, Fax: -1499,

eMail: tlang@mpibpc.mpg.de

Dr. Carmen Rotte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpibpc.mpg.de/
http://www.mpibpc.mpg.de/groups/pr/PR/2007/07_26/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

nachricht Ionen gegen Herzrhythmusstörungen – Nicht-invasive Alternative zu Katheter-Eingriff
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie

Vom Feld in die Schule: Aktuelle Forschung zu moderner Landwirtschaft für den Unterricht

23.01.2017 | Bildung Wissenschaft

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungsnachrichten