Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnelles Denken: Teamarbeit in Nervenzellen

24.08.2007
Individualisten sind die Membranproteine von Nervenzellen eher selten, Zusammenarbeit wird großgeschrieben. Göttinger Forscher des Max-Planck-Instituts für biophysikalische Chemie haben einen neuen Mechanismus herausgefunden, wie sich diese Proteine aktiv zu Gruppen zusammenschließen. Dies könnte ein entscheidender Trick der Natur sein, dass Denkprozesse im Gehirn kontrollierter - und damit schneller ablaufen. (Science, 24. August 2007)

Nervenzellen kommunizieren miteinander über so genannte Synapsen, an denen zwei benachbarte Zellen einen Kontakt ausbilden. Die "sendende" Zelle produziert winzige Bläschen ("Vesikel") mit Botenstoffen. Diese verschmelzen mit der Membran und setzen dabei ihre chemischen Botenstoffe frei, wodurch die "empfangende" Nachbarzelle aktiviert wird.


Das virtuelle Modell zeigt den Aufbau der Syntaxin-1-Proteincluster. Sie sind in der Membran einer Nervenzelle verankert und ragen weit ins Innere der Zelle. Einzelne Syntaxin-1-Proteine wechseln zwischen den verschiedenen Clustern hin und her. Bild: Rammner, Kutzner / MPIbpc

Vermittelt wird diese Verschmelzung durch SNARE-Proteine, die auf der Nervenzellmembran sitzen. Für diese Aufgabe organisieren sie sich in Gruppen, auch Cluster genannt. Wie sich die einzelnen Proteine jedoch zu einer Gruppe zusammenfinden, darüber war bis jetzt nur wenig bekannt.

Bisher wurde angenommen, dass die Membranproteine dabei auf die Hilfe fremder Proteine oder Lipide angewiesen sind. "Wir konnten nun zeigen, dass sich die Membranproteine vielmehr selbst organisieren, indem sie miteinander wechselwirken", erklärt Projektleiter Thorsten Lang vom Max-Planck-Institut für biophysikalische Chemie in Göttingen. "Als molekulare Plattformen stehen sie bereit, damit Vesikel schnell andocken und dadurch Signale rasch weitergeleitet werden können".

Zu diesem überraschenden Ergebnis gelangten die Forscher, indem sie unterschiedliche Methoden und Ansätze kombinierten, denn so ohne weiteres lassen sich die SNARE-Proteine in Aktion nicht beobachten. "Uns hat besonders interessiert, was die Proteine bewegt, sich zusammen zu tun, und wie flexibel diese Cluster hinsichtlich der Anzahl ihrer Proteine sind", erläutert Thorsten Lang. Dazu haben sich die Wissenschaftler das Verhalten eines bestimmten SNARE-Proteins, des Syntaxin-1, genauer angeschaut.

Etwa 1000 Syntaxin-1-Cluster passen auf die Breite eines Haares

Doch sind Syntaxin-1-Cluster in der Zelle so klein und zahlreich, dass man sie unter einem gewöhnlichen Lichtmikroskop nicht einzeln ausmachen kann. Erst mit Hilfe der am Institut entwickelten ultra-hochauflösenden STED-Mikroskopie konnten die Wissenschaftler die einzelnen Syntaxin-1-Büschel sehen und ihre Größe bestimmen - ein Cluster misst gerade ein Tausendstel des Durchmessers eines einzelnen Haares. Durch Kombination von Experiment und Computer-Simulation konnten die Forscher schließlich auch die Anzahl der Proteine im Cluster genau bestimmen. Dazu haben sie zunächst experimentell die Beweglichkeit der Syntaxin-1-Proteine zwischen einzelnen Clustern gemessen. Führten die Wissenschaftler dann Computer-Simulationen mit unterschiedlicher Proteinanzahl pro Cluster durch und verglichen diese mit der gemessenen Beweglichkeit der Proteine im Experiment, so stimmten Experiment und Simulation nur dann überein, wenn sich im Mittel 75 Syntaxine pro Cluster zusammenballten. Um diese 75 Syntaxine auf nur einem Tausendstel des Durchmessers eines Haares unterzubringen, müssen sie damit äußerst dicht gepackt sein.

Einzelne Proteine wandern hin und her

Allerdings sind nicht alle Syntaxin-1-Proteine in Clustern organisiert. Etwa ein Fünftel der Syntaxin-1-Proteine wechselt zwischen unterschiedlichen Proteingruppen in der Membran hin und her. Ob und welche Funktion sie haben, ist noch ungeklärt. Doch sind es vermutlich die Proteincluster, die schnelles Denken ermöglichen. Die Göttinger Forscher wollen nun in Zukunft herausfinden, wie sich das Team aus Proteinen innerhalb des Syntaxin-1-Clusters die Informationsweiterleitung aufteilt.

Die neuen Erkenntnisse haben noch einen interessanten Nebeneffekt. Die wichtige Funktion der SNARE-Proteine in Nervenzellen macht sie zu einem idealen Angriffspunkt für Nervengifte wie die Botulinus-Neurotoxine, kurz Botox genannt. Diese schneiden Syntaxine ab, was direkt auch die Clusterbildung dieser Proteine verhindern würde. Die Arbeiten der Wissenschaftler tragen dazu bei, die Wirkungsweise dieser Nervengifte genauer aufzuklären, so dass diese auch zu unserem Nutzen angewendet werden können. Botox wird bereits erfolgreich bei der Behandlung von Spasmen eingesetzt. In feiner Dosierung werden die Nervenleitungen dazu an der gewünschten Stelle blockiert und dadurch die Muskelspannungen gelöst. Auch die eine oder andere Hautfalte lässt sich auf diese Weise glätten.

Originalveröffentlichung:
Jochen J. Sieber, Katrin I. Willig, Carsten Kutzner, Claas Gerding-Reimers, Benjamin Harke, Gerald Donnert, Burkhard Rammner, Christian Eggeling, Stefan W. Hell, Helmut Grubmüller und Thorsten Lang: Anatomy and Dynamics of a Supramolecular Membrane Protein Cluster. Science 317 (24. August 2007)
Weitere Informationen:
Dr. Thorsten Lang, Max-Planck-Institut für biophysikalische Chemie, Abt. Neurobiologie, Am Faßberg 11, 37077 Göttingen, Tel: 0551 201-1795, Fax: -1499,

eMail: tlang@mpibpc.mpg.de

Dr. Carmen Rotte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpibpc.mpg.de/
http://www.mpibpc.mpg.de/groups/pr/PR/2007/07_26/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Selbstfaltendes Origami
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungsnachrichten

Überschwemmungen genau in den Blick nehmen

27.06.2017 | Informationstechnologie