Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Werkstatt für gestresste Proteine

28.03.2002


Max-Planck-Wissenschaftler entschlüsseln molekulare Maschine, die in allen Zellen wahlweise als Faltungshelfer oder als Zerkleinerungsmaschine für Proteine arbeitet

Geraten Proteine unter Stress, verlieren sie ihre Fassung und können ihre Aufgaben nicht mehr richtig wahrnehmen. Glücklicherweise besitzt jede Zelle eine Maschinerie, die in solchen Situationen hilft. Dazu gehört auch das Protein DegP, das über die Fähigkeit verfügt, gestresste Proteine wieder in Form zu bringen. Gelingt ihm das jedoch nicht, ändert DegP seine Einstellung und - statt zu reparieren - liquidiert es die beschädigten Proteine, bevor sie der Zelle gefährlich werden können. Wissenschaftler vom Max-Plank-Institut für Biochemie (Martinsried) in der von Nobelpreisträger Prof. Robert Huber geleiteten Abteilung "Strukturforschung" ist es jetzt gelungen, die dreidimensionalen Struktur von DegP aufzuklären und wichtige Einsichten zu liefern, wie diese molekulare Maschine über "Reparatur oder Verschrottung" anderer Proteine entscheidet (nature, 28. März 2002). Dieses Wissen hat auch Bedeutung für ein besseres Verständnis der zellulären Vorgänge bei neurodegenerativen Erkrankungen.

Der reibungslose Ablauf der lebenserhaltenden Maschinerie in Zellen ist nur dann gewährleistet, wenn alle daran beteiligten Komponenten - zumeist Proteine - wie ein Zahnrad in das andere greifen. Hierzu müssen sie eine definierte dreidimensionale Struktur besitzen, denn nur korrekt gefaltete Proteine sind in der Lage, zelluläre Bausteine spezifisch zu erkennen. Bei extern verursachten Stresssituationen, die auftreten, wenn es zum Beispiel zu heiß wird, kann es sehr schnell dazu kommen, dass die Proteine ihre charakteristische Form verlieren und deshalb ihre vielfältigen Aufgaben nicht mehr erfüllen können. Die defekten Proteine stellen nun selbst eine tödliche Gefahr für die Zelle dar: Sie tendieren dazu, sich mit anderen deformierten Eiweißen zusammenzulagern und zu riesigen Aggregaten zu verklumpen. Extreme Beispiele für die negativen Auswirkungen solcher Protein-Verklumpung sind das Kreuzfeld-Jakob Syndrom und die Alzheimersche Krankheit, bei denen es zu bestimmten Proteinablagerungen in den Nervenzellen des Gehirns kommt.

Um dieses negative Szenario zu verhindern, produziert die Zelle in extremen Situationen eine Reihe so genannter "Hitzeschockproteine". Diese sorgen dafür, dass der Anteil an Proteinen, die nicht in Form sind, möglichst niedrig gehalten wird. Hitzeschockproteine lassen sich in zwei Kategorien einteilen: Zum einen gibt es die Gruppe der Chaperone, der heilenden "Anstandsdamen", die versuchen, entfaltete Proteine wieder in ihren funktionellen Zustand zurückzuführen. Ist diese Reparatur nicht möglich, wird eine andere Gruppe von Hitzeschockproteinen aktiv. Diese gehen weniger zimperlich mit den gestressten Proteinen um und sorgen dafür, dass hoffnungslos defekte Fälle in ihre molekularen Bruchstücke zerlegt und so unschädlich gemacht werden. Dabei ist noch völlig unklar, welche "technischen Befunde" ausschlaggebend sind, dass ein Protein von einem Chaperon oder einer Protease bearbeitet wird, oder anders formuliert, was einen "Totalschaden" bei einem Protein-Kandidaten ausmacht.

Das Martinsrieder Forschungsteam hat sich bei der Untersuchung dieser fundamentalen biologischen Fragestellung auf das Hitzeschockprotein DegP konzentriert. Interessanterweise vereinigt DegP die gegensätzlichen Eigenschaften von Protease und Chaperon in sich. Bereits vor drei Jahren hatte die Arbeitsgruppe um Michael Ehrmann (Cardiff University) für das bakterielle Protein gezeigt, dass das Umschalten zwischen den beiden konträren Aktivitäten in Abhängigkeit von der Temperatur erfolgt. Bei Temperaturen unter 30° C ist DegP vorwiegend als "fleißig reparierendes" Chaperon aktiv, bei höheren Temperaturen verwandelt es sich in eine "konsequent verschrottende" Protease. Diese Arbeitsaufteilung ist schlüssig: Bei hohen Temperaturen ist der strukturelle Schaden an den Proteinen größer als bei niedrigen Temperaturen. Von daher scheint es für die Zelle einfacher zu sein, stark deformierte Proteine zu liquidieren, als Energie in ihre Reparatur zu stecken. Bei niedrigen Temperaturen dagegen halten sich die strukturellen Schäden der Proteine in Grenzen, so dass eine Rückfaltung in den funktionellen Zustand ohne großen Aufwand erfolgen kann.

Die entscheidende Voraussetzung zur Bestimmung der Röntgenstruktur von Proteinen ist das Vorhandensein von Proteinkristallen in höchster Qualität. Im Fall von DegP konnten jedoch nur Kristalle minderer Qualität gezüchtet werden, die kaum in der Lage waren, Röntgenstrahlen zu beugen. Den Wissenschaftlern gelang es, die Streueigenschaften der Kristalle durch die längerfristige Lagerung bei 4°C entscheidend zu verbessern. Zudem konnte durch diese Kühlung der kälteliebende Chaperon-Zustand von DegP im Kristall eingefangen werden.

"Abb. 1: Darstellung der molekularen Oberfläche von DegP im offenen (links) und im geschlossenen Zustand (Mitte). Der N-terminale Bereich ist in blau wiedergegeben, die Protease in grün, die PDZ1-Domäne in orange und PDZ2-Domäne in rot. Das Bild auf der rechten Seite zeigt die Überlagerung der beiden Einzelmoleküle, die den beiden Formen zugrunde liegen. Während die Protease-Domäne fixiert ist, kommt es zu einer Umlagerung der PDZ1-Domäne."
"Foto: Max-Planck-Institut für Biochemie"

Die Struktur des DegP-Moleküls besteht aus vier Komponenten: ein N-terminaler Haken, der vom Rest des Proteins absteht, eine Protease-Domäne und zwei PDZ-Domänen (typische Protein-Protein Interaktionsmodule). Die DegP-Moleküle lagern sich zu großen Komplexen zusammen, die eine Art molekularen Käfig bilden. Das Innere dieses Käfigs ist die "Werkstatt" des Proteins, in der sich die proteinspaltenden Arbeitsstätten befinden. Der Komplex konnte im Proteinkristall in zwei Zuständen beobachtet werden: in einer geschlossenen Form, bei der die Eingänge zur Werkstatt verschlossen waren, und in einer offenen Form, in der die PDZ-Domänen - ähnlich wie die Flügeltüren eines Rennwagens - nach oben schwingen und den Käfig öffnen (Abb. 1). Offensichtlich sind die PDZ-Domänen die "Türsteher" dieses Systems, da sie auch als erste Anlaufstelle für die zu reparierenden Proteine dienen. Dank ihrer bemerkenswerten Beweglichkeit arbeiten diese Domänen wie molekulare Tentakel, die umherschwingen, gestresste Proteine einfangen und diese anschließend in dem DegP-Käfig abliefern. Einmal im Käfig eingesperrt, hängt das Schicksal der Proteine von einem fein abgestimmten Zusammenspiel verschiedener molekularer Schalter ab. Diese Schalter funktionieren wie Temperaturfühler, die den Zugang zur Proteindemontage regeln. Öffnet sich dieser Zugang nicht, können sich die eingefangen Proteine über eine recht "angenehme" Umgebung im Innern des DegP-Käfigs erfreuen.

"Abb. 2: Drei Halbschnitte des Proteins DegP zur Veranschaulichung der Eigenschaften seines inneren Käfigs: Die Schnitte links und in der Mitte zeigen eine Aufsicht, der rechte Schnitt eine Seitenansicht des DegP-Proteins. Die schwarz gezeichneten Bereiche entsprechen den Schnittflächen. Die linke Abbildung zeigt die Flexibilität der einzelnen Bereiche: Sehr bewegliche Regionen sind rot, starre Regionen sind blau markiert. Im mittleren Bild sind die hydrophoben Flächen im Innern von DegP grün hervorgehoben. Im rechten Bild wurde - zur Veranschaulichung der Größe von DegP - eine einfache α-Helix, in gelb, in den Käfig des Proteins modelliert."
"Foto: Max-Planck-Institut für Biochemie "

In der im Kristall eingefrorenen Struktur konnten die Max-Planck-Wissenschaftler den "heilenden" Chaperon-Zustand beobachten. Chaperone besitzen einige typische Eigenschaften, die mit ihrer Funktion zusammenhängen, ungefaltete, meist hydrophobe, also wasserabweisende Segmente von Proteinen zu erkennen. Diese charakteristischen Merkmale lassen sich auch in der DegP-Struktur erkennen (Abb. 2). Die Innenwände des DegP-Käfigs entsprechen flexiblen, hydrophoben Bindungsplattformen, die ähnlich wie Kondensatorplatten angeordnet sind. Der Abstand zwischen diesen Platten schränkt die Größe der gebundenen Substrate stark ein und verhindert auf diese Weise, dass korrekt gefaltete Proteine in die Werkstatt von DegP gelangen.

Tim Clausen, Leiter des Martinsrieder Forschungsteams, bemerkt: "Unsere Untersuchungen haben ergeben, dass es sich bei dem Proteinkomplex DegP um ein völlig neuartiges Chaperon-Protease-System handelt, das universell verbreitet ist." Von besonderem Interesse sind dabei die menschlichen DegP (HtrA) Proteine, die sich ebenfalls um die Beseitigung gestresster Proteine kümmern. Diese Aufräumkommandos spielen bei einer Vielzahl neurodegenerativer Krankheiten, wie z.B. der Alzheimerschen Krankheit, eine entscheidende Rolle. Die am Beispiel des Bakteriums E. coli entschlüsselte Proteinstruktur liefert Hinweise, wie diese Aufräumkommandos gesteuert werden, und eröffnet damit neue Ansätze für die Therapie dieser Krankheiten. Clausen weiter: "Daneben kann die dreidimensionale Struktur auch als Schablone für das Design spezieller Pharmaka dienen. Solche Pharmaka könnten gezielt die reparierende oder verschrottende Funktion von DegP beeinflussen und auf diese Weise sowohl einem unkontrollierten Proteinabbau als auch einer übermäßigen Proteinaggregation entgegenwirken."

"Die PDZ-Domänen, sozusagen die "Türsteher" des DegP-Komplexes, schwingen umher, um gestresste Proteine einzufangen und diese anschließend in den DegP-Käfig abzuliefern. "
"Foto: Max-Planck-Institut für Biochemie "

Animation (AVI, 4,4MB):

Dr. Tim Clausen | Presseinformation

Weitere Berichte zu: Chaperon DegP DegP-Käfig Käfig PDZ-Domänen Protease Protein Temperatur Werkstatt Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie