Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meilenstein für das Verständnis der Entstehung der Pflanzenarten

03.08.2007
Pflanzenbiologen vermuteten seit längerem, dass bei Blütenpflanzen zwei Zellen des weiblichen Geschlechtsapparates beim Befruchtungsvorgang eine zentrale Funktion zukommt.

Eine Forschungsgruppe der Universität Zürich hat nun erstmals zeigen können, dass die beiden Zellen den Befruchtungsprozess effektiv steuern und auch bei der Entstehung der Pflanzenarten eine Schlüsselrolle gespielt haben. Die Studie ist in der heute erschienenen Ausgabe von "Science" publiziert worden (Volume 317, Issue 5838).

Wie eigentlich kommt ein Spermium zur Eizelle? Bei Säugetieren bewegen sich die männlichen Geschlechtszellen selbst fort: Sie schwimmen, sobald sie den männlichen Körper verlassen haben, aktiv auf die zu befruchtende Eizelle zu. Ganz anders bei Blütenpflanzen: Ihre Spermien sind unbeweglich. Damit weibliche und männliche Geschlechtszellen miteinander verschmelzen können, brauchen die Spermien ein Transportmedium - den Pollen. Dieser keimt und bildet den Pollenschlauch aus. Sobald der Pollenschlauch den Embryosack mit der Eizelle erreicht hat, bricht er auf und setzt die beiden Spermien frei.

Anders bei der Feronia-Mutante der Ackerschmalwand Arabidopsis thaliana, welche den Pflanzenbiologen als Modellpflanze dient. Auch bei der Feronia-Mutante dringt der Pollenschlauch in den Embryosack vor. Die Spermien aber werden nicht freigesetzt: Die Befruchtung unterbleibt. Dieses seltsame Phänomen brachte die Forschungsgruppe von Ueli Grossniklaus, Professor für Pflanzenentwicklungsgenetik an der Universität Zürich, auf die heisse Spur: Die bahnbrechenden Resultate der rund zehnjährigen Forschungsarbeiten sind jetzt im Wissenschaftsjournal "Science" publiziert worden.

Kommunikation zwischen Schloss und Schlüssel

Für das richtige Verhalten des Pollenschlauchs - Andocken am Embryosack und Freisetzen der Spermien - sind, so die neuen Erkenntnisse, zwei Zellen des weiblichen Geschlechtapparates verantwortlich. Diese beiden Zellen werden als Synergid-Zellen bezeichnet. "Die beiden Synergid-Zellen funktionieren ähnlich wie ein Türschloss", fasst Juan Miguel Escobar die Resultate seiner Dissertation zusammen. "Schloss und Schlüssel müssen zusammenpassen, damit das Tor sich öffnet." Die Synergid-Zellen kommunizieren mittels Enzymen, so genannten Kinasen, mit dem Pollenschlauch.

Im Fall der Mutante Feronia ist das Feronia-Gen in den Synergid-Zellen defekt: Die Synergid-Zellen erkennen den Pollenschlauch nicht und kommunizieren folglich nicht mit ihm. Der Pollenschlauch wächst im Embryosack weiter, ohne zu erkennen, dass er am Ziel angelangt ist. Folge davon: Die Spermien werden nicht freigesetzt, die Eizellen nicht befruchtet. "Wenn das Schloss kaputt ist, hilft auch der richtige Schlüssel nicht weiter", bringt Escobar den Sachverhalt auf den Punkt.

Das gleiche Phänomen konnten die Forscher auch beobachten, wenn sie die Ackerschmalwand mit artfremdem Pollen von Arabidopsis lyrata bzw. Cardamine flexuosa bestäubten: Auch hier wächst der Pollenschlauch im Embryosack weiter, die Freisetzung des Pollens unterbleibt. Um bei Escobars Bild von Schloss und Schlüssel zu bleiben: Nur der passende Schlüssel vermag das Schloss zu öffnen und den Kommunikationsprozess zwischen weiblichen und männlichen Zellen zu starten. Unterbleibt die Kommunikation, verläuft der Befruchtungsversuch ergebnislos.

Fehlende Kommunikation verantwortlich für Entstehung der Artengrenze

Mit diesem Schloss-und-Schlüssel-Prinzip schützen sich Blütenpflanzen vor der Befruchtung mit artfremdem Pollen. Die fehlende Kommunikation von weiblichen und männlichen Zellen spielt für die Entstehung der Artengrenze die zentrale Rolle, so die wichtigste Erkenntnis von Escobar. Die Grenze zwischen nahe verwandten Arten kann dereinst vielleicht überwunden werden. Dazu müsste der Kommunikationsprozess so verändert werden, dass Schloss und Schlüssel erneut zusammenpassen und miteinander kommunizieren können, vermutet der junge Forscher.

Schlüssel gesucht

Vorerst aber gilt es, zuerst den männlichen Kommunikationspartner der Synergid-Zellen zu identifizieren. Dazu Juan Miguel Escobar: "Wir kennen das Schloss. Wir wissen, dass es einen Schlüssel geben muss. Aber wir wissen noch nicht, wie der Schlüssel aussieht." Zukünftige Forschungsarbeiten sollen zudem auch aufzeigen, wie der Informationsaustausch zwischen Schloss und Schlüssel genau erfolgt.

Kontakt:
Dr. des. Juan Miguel Escobar
Institut für Pflanzenbiologie
Universität Zürich
Ueli Grossniklaus Group
Tel. +41 (0)44 634 82 53

Beat Müller | idw
Weitere Informationen:
http://www.sciencemag.org
http://www.uzh.ch/

Weitere Berichte zu: Embryosack Pollen Pollenschlauch Spermien Synergid-Zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Spot auf die Maschinerie des Lebens
23.08.2017 | Max-Planck-Institut für die Physik des Lichts, Erlangen

nachricht Immunsystem kann durch gezielte Manipulation des Zellstoffwechsels reguliert werden
23.08.2017 | Medical University of Vienna

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie