Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kurzlebige Leistungsträger im Rampenlicht

31.07.2007
Neuer SFB an der LMU gestartet

Als Werkzeuge oder Bausteine für neuartige Stoffe werden häufig Enzyme und andere Biomoleküle genutzt. Deren Strukturen und Interaktionen dominieren deshalb noch immer die chemische und biochemische Forschung. Doch diese zeitunabhängigen und rein statischen Eigenschaften greifen für ein tieferes Verständnis zu kurz, weil in vielen Fällen reaktive Zwischenstufen eines Moleküls oder aktivierte Enzyme entstehen, die erst die eigentliche Reaktion durchführen. Eben diesen - meist noch unbekannten - dynamischen Parametern widmet sich nun der neue Sonderforschungsbereich (SFB) 749 "Dynamik und Intermediate molekularer Transformation". Sprecher des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Projekts ist Professor Thomas Carell vom Department für Chemie und Biochemie der Ludwig-Maximilians-Universität (LMU) München. Im Rahmen des SFB sollen schwer zu untersuchende molekulare Zwischenstufen unter anderem mit Hilfe moderner Ultrakurzzeitmethoden analysiert werden.

Ohne zeitabhängige Transformationen könnten viele Moleküle ihre Aufgaben nicht übernehmen. Doch oft werden die zugrunde liegenden Prinzipien und die dabei entstehenden Zwischenstufen nicht oder zu wenig verstanden. Schuld daran ist die kurzlebige Natur der reaktiven Intermediate. "Es bedarf teilweise komplizierter zeitauflösender Techniken, um sie fassbar und studierbar zu machen", so Carell. "Es ist dabei unerheblich, ob sich die Forschung auf Prozesse in einem klassischen Reaktionsgefäß oder in einer Zelle konzentriert. Immer bedarf es ausgefeilter Messtechniken, die nur an wenigen Forschungsstandorten weltweit beherrscht werden." Und München ist einer davon. Deshalb wird die dynamische Untersuchung molekularer chemischer und biochemischer Reaktivität mit Hilfe zeitauflösender Laserspektroskopie das zentrale Element im geplanten SFB sein. Zudem vereint München eine weltweit einmalige Zahl von führenden Vertretern der relevanten Forschungsgebiete zur molekularen Dynamik.

Ziel des SFB ist, die Parameter zu untersuchen, die die Reaktivität und Funktion von chemisch und biologisch relevanten Molekülen in Lösung und auch in Zellen steuern. "Wir werden uns dabei auf Prozesse in organischen Lösungsmitteln, die für die synthetische Chemie so bedeutsam sind, und auf Wasser in den biologischen Fragestellungen konzentrieren", berichtet Carell. Reaktionen in der Gasphase stehen nicht im Fokus. "Von Interesse ist für uns dabei nicht nur die Art der reaktiven Zwischenstufen, sondern auch deren Stabilität und die Bildungsgeschwindigkeit, mit der die Aktivierung erfolgt. Denn sie bestimmt wiederum die Reaktivität eines Moleküls." Weil die zu untersuchenden Systeme so komplex sind, werden auch neue Methoden und Konzepte erarbeitet werden müssen. Deren allgemeine Natur wiederum wird ganze Klassen von Prozessen einer Beschreibung zugänglich machen. Insgesamt wird der SFB an den Schnittstellen der drei Disziplinen Chemie, Biologie und Physik tätig sein. Er integriert alle Bestrebungen in den Einzeldisziplinen, den zeitlichen Verlauf chemischer und biochemischer Prozesse zu analysieren.

... mehr zu:
»Enzym »Molekül »Prozess

Im Bereich der Biologie soll unter anderem die Proteinfaltung im Vordergrund stehen, ein für die Funktion der Moleküle essentieller Prozess, der immer noch unzureichend aufgeklärt ist. Dieser dynamische Vorgang verläuft über eine Reihe von zum Teil definierten Zwischenstufen der Faltung. "Aber auch hier sind letztlich nur die sehr einfachen Systeme gut verstanden", meint Carell. "Allgemein haben sich Enzyme, die radikalische Zwischenstufen generieren, bislang nahezu vollständig einer besseren mechanistischen Untersuchung entzogen. Hier wollen wir Untersuchungen mit zeitauflösenden Techniken durchführen." Wichtig ist auch, dass die Reaktivität der Systeme oft durch die Positionierung eines Enzyms in der Zelle und die dadurch erzeugte spezifische Umgebung reguliert wird. "Die Untersuchung der enzymatischen Aktivität in der Zelle ist ein neues und sehr spannendes Gebiet", berichtet Carell. "Auch dieses neue Forschungsfeld werden wir im SFB verfolgen."

Enzyme und metallorganische Katalysatoren sind zudem auch das Rückgrat der modernen Prozesschemie. "Die fundamentalen Verständnisdefizite im Bereich der Dynamik dieser molekularen Systeme sind deshalb besonders beklagenswert", meint Carell. "Wären metallorganische Prozesse besser verstanden, könnten die im Labor entwickelten Systeme sehr viel leichter in großtechnische Prozesse integriert werden." Auch ließen sich neue Katalysatorsysteme und neue Reaktionen planbarer finden. Bislang sind enzymatische Prozesse und die evolutive Optimierung der Biokatalysatoren noch auf einfachste Systeme beschränkt, weil wenig über die komplexeren Enzyme bekannt ist. "Einige davon könnten aber dabei helfen, eine nachhaltige, moderne und umweltschonende Chemie in der Industrie aufzubauen", meint Carell. "Wir erwarten aber auch neue Ergebnisse, die Einzug in die Lehrbücher halten könnten."

Ansprechpartner:
Professor Dr. Thomas Carell
Department für Chemie und Biochemie
Tel.: 089 / 2180-77755
E-Mail: Thomas.Carell@cup.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Enzym Molekül Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscherteam der Universität Bremen untersucht Korallenbleiche
24.04.2017 | Universität Bremen

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung