Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartiger Konstruktionsplan für Filamente

19.07.2007
Max-Planck-Wissenschaftler klären auf, wie sich Septin-Filamente bilden

Ob Zellen sich korrekt teilen, Enzyme als Signalgeber fungieren oder Botenstoffe aus Zellen ausgeschleust werden, entscheidend für die Funktion biologischer Moleküle sind ihre Bausteine und deren dreidimensionale Anordnung. Forscher der Max-Planck-Institute in Dortmund und Göttingen haben jetzt den universellen Bauplan einer noch wenig erforschten Proteinklasse, der Septin-Filamente, entschlüsselt.


Kleinstes Glied der Kette: Die Dopplung der drei Untereinheiten SEPT2, SEPT6 und SEPT7 bildet das sich wiederholende Grundelement, ein Hexamer, die kleinste Funktionseinheit der Septine. Eines dieser Hexamere ist 2,5 Millionstel Millimeter lang. Aneinander gereiht entstehen daraus lange Fasern, die sich - je nach Funktion - weiter zu Ringen oder komplexen Netzwerken anordnen können. Diese Protein-Ketten können sich nach beiden Enden gleichermaßen verlängern - ein bislang neuartiges Bauprinzip zellulärer Filamentproteine.
Bild: MPI für Molekulare Physiologie / Wittinghofer

Diese faszinierenden Proteine sind zelluläre Verwandlungskünstler, die mithilfe ihrer Strukturen an wichtigen biologischen Prozessen beteiligt sind, wie beispielsweise an der Zytogenese oder am Stofftransport durch die Zelle. Überraschenderweise ist der Filamentaufbau der Septine grundlegend anders als bislang vermutet und weist keine Ähnlichkeit mit anderen hierarchisch aufgebauten, faserartigen Strukturen in biologischen Systemen auf (Nature, 19. Juli 2007).

Um ihre biologische Funktion zu erfüllen, falten sich Proteine in eine dreidimensionale Struktur. Lagern sich einzelne gefaltete Proteine zu größeren Bauelementen zusammen, und reihen sich diese Einheiten wiederum wie Perlen zu einer Kette auf, entstehen Fasern mit einer komplexen Geometrie, wie Zellen sie für ihr Zytoskelett und zur Zellteilung benötigen. Bekannte und gut untersuchte Vertreter sind beispielsweise Aktinfilamente und Mikrotubuli. Ähnlich komplex, jedoch weitaus weniger erforscht als die Proteine des Zytoskeletts, sind die Septine. Diese Proteine wurden vor über 35 Jahren in Zellen der Bäckerhefe entdeckt.

Hefezellen vermehren sich, indem sich Tochterzellen von einer Mutterzelle abschnüren. Bei dieser Art der Zellteilung bilden die Septine eine ringförmige Struktur, die die Teilungsebene, das Septum, kennzeichnet. Das war der Ursprung für die Namensgebung dieser ungewöhnlichen Filamente. "Zwanzig Jahre lang hielt man Septine für typische Proteine der Hefe und anderer Pilze. Heute weiß man, dass Septine in praktisch allen Organismen außer Einzellern und Pflanzen vorkommen", erklärt Alfred Wittinghofer. Worin genau ihre Funktionen bestehen, ist weitgehend unerforscht. Sicher scheint, dass Septine essenziell für die Zellteilung und die Organisation des Zytoskeletts sind. Aber auch im Gehirn finden sich Septine in großer Menge; hier sind sie unter anderem am Transport von Vesikeln und damit an der Freisetzung von Botenstoffen wie Dopamin und Serotonin beteiligt.

Septine können ihre verschiedenen Funktionen ausführen, indem sie untereinander und mit anderen Proteinen interagieren. Dabei bilden die kleinen Septine zunächst miteinander größere Komplexe. Diese werden schließlich zu langen Strängen, den Filamenten, verknüpft. Diese Filamente können - je nach Zelltyp und Funktion - unterschiedliche Formen annehmen: Sie erscheinen als stäbchenförmige Strukturen, können sich wie bei der Zellteilung zu Ringen formen oder zu komplexen Netzwerken verflechten. Die Formen entstehen sehr schnell und dynamisch; je nach Bedarf werden Filamente laufend auf- und wieder abgebaut.

Die Forscher um Alfred Wittinghofer nutzen nun erstmals die Röntgenkristallographie, um die Struktur der Filamente zu analysieren. Dabei werden die Septine zunächst kristallisiert und anschließend mit Röntgenstrahlen durchleuchtet. Die Röntgenstrahlen lassen ein Beugungsmuster entstehen, mit dessen Hilfe ein Computer errechnet, wo die Atome im Kristall liegen und wie das Protein somit strukturiert ist. "Mithilfe des Elektronenmikroskops konnten wir dann die 3-D Modelle der Kollegen bestätigen", erklärt Holger Stark vom Max-Planck-Institut für biophysikalische Chemie.

Die Lage der Atome im Filament verriet den Forschern, dass sich immer sechs Septin-Moleküle aneinanderreihen und damit das kleinste Konstruktionselement für die Filamente bilden (Abb. 1). Die beiden Sept-2 Moleküle in der Mitte fügen sich seitenverkehrt und Kopf-an-Kopf aneinander. Alle Septine binden sich dabei an die G-Domäne des anderen. In der G-Domäne binden sich die Nukleotide Guanosintriphosphat (GTP) und Guanosindiphosphat (GDP) aneinander. Diese Bindungsstelle ist in allen menschlichen Septinen praktisch identisch. Zu beiden Seiten der G-Domäne befinden sich jedoch Regionen, die sehr unterschiedlich geformt sein können. Viele Septine sind an einem Ende spiralig aufgefaltet. Diese Doppelwendel-Strukturen sind auch in vielen anderen Proteinen zu finden. "Bisher hatte man angenommen, dass das spirale Ende verantwortlich ist für die Bildung der Septin-Filamente", so Wittinghofer: "Doch diese Annahme wird jetzt durch unsere Erkenntnisse revidiert." Die Aufnahmen der Forscher zeigten auch, dass die Verbindungsstelle zwischen den beiden SEPT2-Elementen räumlich flexibel ist, so dass längere Filamente beispielsweise zu einem Ring gebogen werden können, ohne zu brechen. "Das erklärt erstmals, warum die Septin-Filamente in so vielen Formen vorkommen und dadurch ihre vielen Aufgaben erfüllen können", erklärt Stark.

Das große Interesse der Wissenschaftler am Aufbau der Septine hat einen weiteren Grund: Zunehmend werden die Eiweiße mit verschiedenen Krankheiten in Zusammenhang gebracht. Bei Alzheimer und Parkinson sind sie an der Bildung von krankhaften Ablagerungen in Hirnzellen beteiligt. Mutationen eines Septin-Gens führen zu einer schmerzhaften Nervenerkrankung mit Lähmung und Gewebsschwund der Schulter- und Armmuskulatur (Hereditärer Neuralgischer Amyotrophie). Auch an der Entstehung der myeloischen Leukämie sind nachweislich Septine beteiligt. Deutlich veränderte Konzentrationen der Septine in Gewebstumoren weisen darauf hin, dass sie bei der Entstehung dieser Tumorklasse eine entscheidende Rolle spielen.

Die neuen Erkenntnisse über die Struktur der Filamente können zu einem besseren Verständnis beitragen, wie diese Krankheiten entstehen, und helfen in der Zukunft neue Therapieansätze zu entwickeln.

[GD/STR]

Originalveröffentlichung:

Minhajuddin Sirajuddin, Marian Farkasovsky, Florian Hauer, Dorothee Kühlmann, Ian G. Macara, Michael Weyand, Holger Stark, Alfred Wittinghofer
Structural insight into filament formation by mammalian septins
Nature, 19. Juli 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Filament G-Domäne Protein Septin-Filamente Zellteilung Zytoskelett

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie