Molekulare Zündkerzen machen Erdöl genießbar

Zum Glück fressen manche Bakterien Erdöl. Ohne ihre Verdauungsarbeit würden die Folgen von Tanker-Unglücken niemals verschwinden: Unsere Meere wären von Ölteppichen bedeckt. Die Struktur einiger Eiweißverbindungen, die es den Bakterien ermöglichen, die Kohlenstoffketten des Erdöls zu knacken, haben jetzt Forscher des Helmholtz-Zentrums für Infektionsforschung in Braunschweig aufgeklärt.

Ihre Ergebnisse – die atomaren Details dieser Strukturen – veröffentlicht die Arbeitsgruppe um den Strukturbiologen Dr. Wolf-Dieter Schubert heute in der amerikanischen Fachzeitschrift PNAS.

Erdöl ist äußerst widerstandsfähig. Und obwohl es – zu Diesel oder Benzin verarbeitet – der Energieträger Nr.1 der Welt ist, ist zunächst Energie erforderlich, um seine chemisch trägen, sehr langen Kohlenstoffketten überhaupt angreifen zu können. Erst wenn der Zündfunke im Motorraum überspringt, setzt der Treibstoff seine Energie frei. Und auch Bakterien müssen diese energetische Hürde nehmen, um Erdöl oder auch Diesel als Nahrungsquelle nutzen zu können. Die Bakterien haben jedoch keine eingebauten Zündkerzen, mit denen sie die Kohlenwasserstoffe entzünden und so die Energie frei setzen könnten – ganz abgesehen davon, dass sie die Explosion, die dem Zündblitz folgt, nicht überleben würden. Sie gehen viel subtiler vor: Sie aktivieren die trägen Moleküle im ersten Schritt durch den Einbau von Sauerstoff. Die langen Ketten werden so angreifbar und damit für die Bakterien leichter verdaulich. Die Energie wird gewissermaßen häppchenweise freigesetzt.

„Wir wollten herausfinden, wie die Moleküle aussehen, die sozusagen den Strom für diesen Prozess liefern“, beschreibt Wolf-Dieter Schubert die Aufgabe, die sich seine Gruppe gestellt hat. Dazu untersuchten die Forscher diesen Vorgang am Bakterium Pseudomonas aeruginosa. Gregor Hagelüken, Doktorand in Schuberts Arbeitsgruppe, nahm die molekulare Stromversorgung von Pseudomonas genau unter die Lupe: „Wir wussten, dass es die beiden Proteine `Rubredoxin´ und `Rubredoxin-Reduktase´ sind, die die Energie für diesen Prozess liefern und Pseudomonas damit zum Erdöl-Fresser machen. Uns ist es gelungen, beide Proteine gemeinsam zu kristallisieren und ihre atomare Struktur im Detail aufzuklären. Jetzt können wir genau erklären, wie Pseudomonas Energie in Form von Elektronen aus seinen normalen Stoffwechselwegen abzweigt – um damit Erdölbestandteile vor der Verdauung zu aktivieren.“

„Pseudomonas aeruginosa ist ein zweischneidiges Schwert,“ sagt Wolf-Dieter Schubert, „einerseits ist das Bakterium ein wertvoller Verbündeter, wenn es darum geht, vom Menschen verursachte Umweltschäden zu reparieren, andererseits ist es gleichzeitig ein gefährlicher Krankheitserreger, der chronische Infektionen beim Menschen verursachen kann.“

Originalpublikation:
Gregor Hagelueken, Lutz Wiehlmann, Thorsten M. Adams, Harald Kolmar, Dirk W. Heinz , Burkhard Tümmler, and Wolf-Dieter Schubert (2007):

Crystal structure of the electron transfer complex rubredoxin-rubredoxin reductase of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences USA.Vol. 104 , Issue 30, pp.12276-12281

Media Contact

Hannes Schlender Helmholtz Infektionsforschung

Weitere Informationen:

http://www.helmholtz-hzi.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer