Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chamäleon für die Optoelektronik

16.07.2007
Optische Halbleiter aus Magnetteilchen ändern ihre Farbe abhängig von der Magnetfeldstärke

Eine Flüssigkeit, die auf Knopfdruck ihre Farbe ändert, und ganz nach Wunsch jede Regenbogenfarbe annehmen kann? In der Zeitschrift Angewandte Chemie hat ein Forscherteam um Yadong Yin von der University of California (Riverside, USA) das Geheimnis ihrer wundersamen Flüssigkeit verraten: Nanoskopische Partikel aus magnetischen Kriställchen, beschichtet mit einer Kunststoffhülle, organisieren sich in der Lösung zu so genannten photonischen Kristallen - einer Art Halbleiter für Licht. Wird ein Magnetfeld angelegt, ändern sich die optischen Eigenschaften der Kristalle, ihre Farbe lässt sich über die Stärke des Feldes sehr präzise justieren.

Bei den Kristallen handelt es sich nicht um "konventionelle" Kristallgitter aus Ionen oder Molekülen, wie wir sie z.B. als Salzkristalle kennen, sondern um kolloidale Kristalle, periodische Strukturen, die sich von selbst aus gleichgroßen, feinst in einer Flüssigkeit verteilten Feststoffpartikeln aufbauen. Kolloidale Kristalle lassen sich zu geringen Kosten und in großem Maßstab herstellen - und können als photonische Kristalle genutzt werden. Photonische Kristalle sind das optische Analogon zu elektronischen Halbleitermaterialien. Analog zu ihren elektronischen Pendants haben sie photonische Bandlücken, Bereiche verbotener Energien, also Wellenlängen, für die der photonische Kristall undurchlässig ist. Diese optische Eigenschaften hängen von den räumlichen Verhältnissen im Kristall ab. Von größtem Interesse sind photonische Kristalle, deren verbotene Bänder variabel sind und sich als Antwort auf einen äußeren Reiz rasch und präzise einstellen lassen. Diese Forderungen waren bisher kaum zu erfüllen.

Ein solcher Reiz kann z.B. ein Magnetfeld sein, wenn die Kristalle aus magnetischen Materialien bestehen, etwa Eisenoxid. Das Problem dabei: Die Magnetisierung bleibt erhalten, sobald die Partikel zu größeren Domänen anwachsen (Ferromagnetismus). Yin und sein Team fanden eine Lösung: Sie beschichten nanoskopische Eisenoxid-Partikel mit dem Kunststoff Polyacrylat. So entstehen separate Nanokristallcluster, die sich in Lösung zu kolloidalen photonischen Kristallen organisieren. Die Kräfte des Magnetfelds wirken auf jeden einzelnen Cluster und verändern dabei die Abstände zwischen den Clustern im Kristallgitter. In Abhängigkeit vom Abstand vom Magneten und damit von der Feldstärke ändert sich die Farbe der Kolloidkristalle quer durch alle Regenbogenfarben. Die Antwort ist sehr schnell und völlig reversibel, da die Nanokristalle innerhalb der Cluster so klein sind, dass sie ihre Magnetisierung nach Abschalten des Magnetfelds wieder verlieren (Superparamagnetismus). Potenzielle Anwendungsfelder für diese schaltbaren "optischen Halbleiter" sind neuartige optoelektronische Bauteile für die Telekommunikation, Displays und Sensoren.

Angewandte Chemie: Presseinfo 28/2007

Autor: Yadong Yin, University of California, Riverside (USA), http://www.chem.ucr.edu/index.html?main=faculty&facsort=profile&faculty=yin

Angewandte Chemie, doi: 10.1002/ange.200701992

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://presse.angewandte.de
http://www.chem.ucr.edu/index.html?main=faculty&facsort=profile&faculty=yin

Weitere Berichte zu: Cluster Flüssigkeit Kristall Magnetfeld

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher vergleichen Biodiversitätstrends mit dem Aktienmarkt
06.12.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten