Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chamäleon für die Optoelektronik

16.07.2007
Optische Halbleiter aus Magnetteilchen ändern ihre Farbe abhängig von der Magnetfeldstärke

Eine Flüssigkeit, die auf Knopfdruck ihre Farbe ändert, und ganz nach Wunsch jede Regenbogenfarbe annehmen kann? In der Zeitschrift Angewandte Chemie hat ein Forscherteam um Yadong Yin von der University of California (Riverside, USA) das Geheimnis ihrer wundersamen Flüssigkeit verraten: Nanoskopische Partikel aus magnetischen Kriställchen, beschichtet mit einer Kunststoffhülle, organisieren sich in der Lösung zu so genannten photonischen Kristallen - einer Art Halbleiter für Licht. Wird ein Magnetfeld angelegt, ändern sich die optischen Eigenschaften der Kristalle, ihre Farbe lässt sich über die Stärke des Feldes sehr präzise justieren.

Bei den Kristallen handelt es sich nicht um "konventionelle" Kristallgitter aus Ionen oder Molekülen, wie wir sie z.B. als Salzkristalle kennen, sondern um kolloidale Kristalle, periodische Strukturen, die sich von selbst aus gleichgroßen, feinst in einer Flüssigkeit verteilten Feststoffpartikeln aufbauen. Kolloidale Kristalle lassen sich zu geringen Kosten und in großem Maßstab herstellen - und können als photonische Kristalle genutzt werden. Photonische Kristalle sind das optische Analogon zu elektronischen Halbleitermaterialien. Analog zu ihren elektronischen Pendants haben sie photonische Bandlücken, Bereiche verbotener Energien, also Wellenlängen, für die der photonische Kristall undurchlässig ist. Diese optische Eigenschaften hängen von den räumlichen Verhältnissen im Kristall ab. Von größtem Interesse sind photonische Kristalle, deren verbotene Bänder variabel sind und sich als Antwort auf einen äußeren Reiz rasch und präzise einstellen lassen. Diese Forderungen waren bisher kaum zu erfüllen.

Ein solcher Reiz kann z.B. ein Magnetfeld sein, wenn die Kristalle aus magnetischen Materialien bestehen, etwa Eisenoxid. Das Problem dabei: Die Magnetisierung bleibt erhalten, sobald die Partikel zu größeren Domänen anwachsen (Ferromagnetismus). Yin und sein Team fanden eine Lösung: Sie beschichten nanoskopische Eisenoxid-Partikel mit dem Kunststoff Polyacrylat. So entstehen separate Nanokristallcluster, die sich in Lösung zu kolloidalen photonischen Kristallen organisieren. Die Kräfte des Magnetfelds wirken auf jeden einzelnen Cluster und verändern dabei die Abstände zwischen den Clustern im Kristallgitter. In Abhängigkeit vom Abstand vom Magneten und damit von der Feldstärke ändert sich die Farbe der Kolloidkristalle quer durch alle Regenbogenfarben. Die Antwort ist sehr schnell und völlig reversibel, da die Nanokristalle innerhalb der Cluster so klein sind, dass sie ihre Magnetisierung nach Abschalten des Magnetfelds wieder verlieren (Superparamagnetismus). Potenzielle Anwendungsfelder für diese schaltbaren "optischen Halbleiter" sind neuartige optoelektronische Bauteile für die Telekommunikation, Displays und Sensoren.

Angewandte Chemie: Presseinfo 28/2007

Autor: Yadong Yin, University of California, Riverside (USA), http://www.chem.ucr.edu/index.html?main=faculty&facsort=profile&faculty=yin

Angewandte Chemie, doi: 10.1002/ange.200701992

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://presse.angewandte.de
http://www.chem.ucr.edu/index.html?main=faculty&facsort=profile&faculty=yin

Weitere Berichte zu: Cluster Flüssigkeit Kristall Magnetfeld

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neurobiologie - Die Chemie der Erinnerung
21.11.2017 | Ludwig-Maximilians-Universität München

nachricht Diabetes: Immunsystem kann Insulin regulieren
21.11.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie