Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das weltkleinste Kransystem oder wie Fresszellen ihre Beute einholen

11.07.2007
Freiburger und Heidelberger Wissenschaftler entdecken dynamische Mechanismen molekularer Motoren in Tentakeln von Makrophagen

Makrophagen beziehungsweise Fresszellen sind ein Teil des Immunsystems und haben die Aufgabe, sich mittels der so genannten Phagozytose Bakterien einzuverleiben. Die Bakterien werden ins Innere der Makrophage transportiert und dann in der Regel verdaut.

Um die Phagozytose flexibel studieren zu können, kann man statt Bakterien kleine Glas- oder Plastikkügelchen verwenden und diese an die Zellmembran heranführen. Als einen bemerkenswerten Mechanismus kann die Zelle hierfür Tentakel, so genannte Filopodien, ausfahren, um die präsentierte Beute einzuholen. In der aktuellen Ausgabe des Wissenschaftsmagazins Proceedings of the National Academy of Sciences (PNAS) berichten Forscher der Universität Freiburg und des Europäischen Instituts für Molekularbiologie (EMBL) in Heidelberg, wie sie mit einer optischen Pinzette winzige Plastikkugeln an die Tentakel heranfahren, ein Anbinden des Partikels an die Tentakel induzieren und deren Zurückziehen ultrapräzise in drei Dimensionen vermessen. Die Ergebnisse geben Aufschluss über mögliche Wirkungsweisen zukünftiger synthetischer Nano-Kransysteme.

Filopodien, welche auch für die Migration der Zelle eine wichtige Rolle spielen, bestehen aus parallelen Bündeln von Aktin-Filamenten, welche sich dann als Membranausstülpung in Richtung eines Kontaktpunktes schieben. Beim Zurückziehen des Filopodiums übt die Zelle Kräfte im Bereich von Pico-Newton, 10-12 Newton aus, welche nicht nur für die Zellmigration, sondern auch für das Einholen von Partikeln wie Bakterien benutzt werden. Diese Kräfte lassen sich mit einer optischen Falle sehr präzise vermessen. Eine optische Falle erzeugt man durch einen extrem gebündelten Laserfokus und kann damit - pinzettenähnlich - Partikel festhalten und verschieben. Dies geschieht nur durch Lichtkräfte, ohne die Partikel dabei mechanisch zu berühren.

... mehr zu:
»Bakterium »Beute »EMBL »Fresszelle »Partikel »Tentakel »Zelle

Nun hat ein Team von Wissenschaftlern um Professor Alexander Rohrbach vom Institut für Mikrosystemtechnik (IMTEK) der Universität Freiburg festgestellt, dass sich die Tentakel mit den ein tausendstel Millimeter kleinen Plastikkügelchen im Schlepptau mit einer unerwarteten Dynamik zurückzogen. "Eigentlich hatten wir einen kontinuierlichen weichen Rückzug der Tentakel erwartet", berichtet Holger Kress, welcher die Messungen und Simulationen im Rahmen seiner Doktorarbeit am EMBL in Heidelberg durchführte und nun als Postdoc an der Yale-Universität arbeitet. "Überraschenderweise haben wir aber kleine, diskrete Schritte bei der Filopodienretraktion gemessen, welche im Mittel 36 Nanometer lang sind." Die Wissenschaftler wissen aus in-vitro Experimenten, dass Myosin Motorproteine, welche sich für Transportaufgaben auf Aktin entlang bewegen, in Schritten von 36 Nanometern, also tausendstel Mikrometer, laufen. "Wir gehen davon aus, dass man hier erstmalig das Laufen von molekularen Motoren im Inneren einer Zelle dreidimensional beobachten konnte" erklärt Alexander Rohrbach, welcher sich früher am EMBL auch mit der Entwicklung des ausgefeilten Messinstruments, einem so genannten Photonischen Kraftmikroskop, beschäftigt hat.

Die molekularen Motoren versuchen das Filopodium entgegen der anliegenden Fallenkraft zurück zu ziehen und schalten umso mehr Motoren in ihr Kollektiv, je stärker die zu überwindende Kraft ist. "Erstaunlicherweise konnten wir feststellen, dass auch mehrere ziehenden Motoren noch im Gleichschritt laufen. Das heißt, die Motoren beeinflussen sich gegenseitig und werden so organisiert, dass sie immer in ausreichender Zahl zum Einsatz kommen". Die gewonnenen Erkenntnisse, die durch mathematische Modelle gestützt werden, könnten bei der Entwicklung zukünftiger synthetischer Nano-Systeme eine Rolle spielen. "Man stelle sich ein winziges Kransystem vor, welches aus einer Hand voll Zutaten wie sie in jeder Zelle vorhanden sind, zusammenbauen lässt. Ein nano-mechanisches System, welches je nach anliegenden Kräften flexibel und selbständig Aufgaben wie zum Beispiel Partikelsortierung verrichten kann."

Kontakt:
Prof. Dr. Alexander Rohrbach
Institut für Mikrosystemtechnik der
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-7536
E-Mail: rohrbach@imtek.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.uni-freiburg.de/
http://www.pr.uni-freiburg.de/pm/2007/Bild%20Fresszelle

Weitere Berichte zu: Bakterium Beute EMBL Fresszelle Partikel Tentakel Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie