Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Würzburger Forscher zeigen wie Tumorzellen wandern

09.07.2007
Wie Tumorzellen, ja ganze Tumoren sich im Körper ausbreiten - das beschreiben Forscher aus Würzburg, USA und Kanada heute in der Online-Ausgabe von "Nature Cell Biology" erstmals an einem dreidimensionalen Modell. In mehreren Filmen zeigen sie auch für den Laien verständlich, wie sich die Tumoren ihren Weg durchs Gewebe bahnen. Für die Forschung liefern ihre Ergebnisse ein grundlegendes Verständnis für die Therapie von Tumorerkrankungen.

Wie ein Kletterer am Berg wandern Tumorzellen in lebenden Geweben. Mit kleinen Greifarmen heften sie sich an das Gewebe und ziehen sich daran entlang. Doch das ist nicht die ganze Geschichte. Eigentlich ist das Gewebe eher ein festes Netz, das sich oben, unten und seitlich um die Tumorzellen herumspannt - und ist damit für die Zellen viel zu dicht, um sich darin frei bewegen zu können.

Also schneiden sich die Zellen mit molekularen Helfern ständig das Netz zurecht, bilden einen kleinen Pfad und bauen die losen Netzenden wieder so zusammen, dass sie sich mit ihren "Füßen" daran abdrücken können. Dramatischer wird es, wenn sich eine ganze Tumormasse im Kollektiv ihren Weg durch das Gewebe bahnt. Dann wird aus dem kleinen Pfad eine riesige Röhre, in deren Inneren mehrere Zellen nebeneinander Platz haben.

Welche molekularen Helfer die Zelle hat, um sich im Gewebe fortzubewegen, das ist seit längerem bekannt: Integrine, mit denen sich die Zelle am Gewebe festhält und Proteasen, die das Gewebe zerschneiden, sind die wichtigsten. Wie der gesamte Bewegungsablauf in einem echten drei-dimensionalen Gewebe abläuft, wusste jedoch niemand. "Wir konnten uns bisher zwar ungefähr vorstellen, wie sich die Tumorzellen im Gewebe bewegen. Um aber den genauen Bewegungsablauf zu verstehen, ist es unbedingt nötig, die Zellen in einem drei-dimensionalen Gewebe zu beobachten. Dort haben sie nämlich ganz andere Hindernisse", so Prof. Dr. Peter Friedl, Forscher am Rudolf-Virchow-Zentrum/DFG Forschungszentrum und an der Hautklinik der Universität.

... mehr zu:
»Gewebe »Tumorzelle »Zelle

So ließen Versuche im Reagenzglas beispielsweise annehmen, dass die Tumorzellen mit ihren Armen nicht nur zugreifen, sondern gleichzeitig den Weg wie eine Art Bagger für den nachfolgenden dickeren Zellkörper freimachen. Das wäre allerdings so, als würde man den Ast auf dem man sitzt absägen, denn nachkommende Massen oder auch nur die hinteren Enden der Zelle könnten sich dann nicht mehr festhalten. "In unseren Filmen ist ganz deutlich zu sehen, dass erst dort Gewebe zerschnitten wird, wo es für die Zelle zu eng wird. Danach wird ein Teil der losen Enden wieder zusammengeflickt, damit die hinteren auch noch Gewebe zum Abstützen haben", berichtet Friedl. Auch wie die molekularen Helfer die Wanderung ganzer Tumormassen ermöglichen, war nicht bekannt - obwohl Histologen schon länger wissen, dass Tumorzellen bevorzugt in ganzen Zellmassen wandern.

Gemeinsam mit Dr. Katarina Wolf entwickelte er eine Art Ersatzgewebe, Kollagen aus Rindern, in dem sich ein künstlich erzeugter Tumor wie im lebenden Körper ausbreiten kann - in drei Dimensionen. Über viele Jahre haben sie Methoden entwickelt, mit denen sie nun das gesamte Gewebe, dessen Auf- und Umbau und die einzelnen molekularen Helfer erstmals zusammen in zeitlicher Folge sichtbar machen können. Biochemie live unter dem Mikroskop sozusagen. Nach diesem riesigen Erfolg überprüfen die Forscher nun die Gültigkeit direkt im lebenden Organismus. Die Versuche laufen, erste Ergebnisse bestätigen die Übertragbarkeit der Daten.

Die frühzeitige Entdeckung eines Tumors ist nach wie vor die wichtigste Vorsorge bei Krebs. Wie schnell sich aber ein Tumor im Körper ausbreitet und wie man ihn daran hindern kann, darüber gibt es nur wenig Kenntnis. Lassen sich Peter Friedls Ergebnisse übertragen, könnte man mit der Methode diesen Fragen direkt im lebenden Organismus auf die Spur kommen.

Die Forschungen liefen in Kooperation mit Jörg Geiger vom Institut für Klinische Biochemie und Pathobiochemie, Yi Wu, Yueying Liu und Sharon Stack von der Northwestern University Feinberg Medical School, Chicago, sowie Eric Tam und Christopher Overall von der University of British Columbia, Vancouver.

Gerne schicken wir Ihnen die Publikation auf Anfrage zu, Bilder können zur Verfügung gestellt werden.

"Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion", Katarina Wolf, Yi I. Wu, Yueying Liu, Jörg Geiger, Eric Tam, Christopher Overall, M. Sharon Stack, Peter Friedl, Nature Cell Biology 2007, published online 08 July 2007; DOI: 10.1038/ncb1616

Kontakt: Rudolf-Virchow-Zentrum / DFG-Forschungszentrum für Experimentelle Biomedizin Sonja Jülich (Leiterin Öffentlichkeitsarbeit)
Telefon 0931 / 201 487 14, Mobil: 0174-2118850
Email: sonja.juelich@virchow.uni-wuerzburg.de

Sonja Jülich | idw
Weitere Informationen:
http://www.rudolf-virchow-zentrum.de

Weitere Berichte zu: Gewebe Tumorzelle Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise