Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geschmacksforscher identifizieren "Artischocken-Rezeptor"

28.06.2007
Es gibt 25 verschiedene menschliche Bittergeschmack-Rezeptorproteine. Bislang wusste man nur von wenigen der Rezeptoren, welche Art von Bitterstoffen sie erkennen. Ein Wissenschaftlerteam um Wolfgang Meyerhof vom Deutschen Institut für Ernährungsforschung Potsdam-Rehbrücke (DIfE) identifizierte nun den TAS2R46 als den Rezeptor, der eine breite Palette von Bitterstoffen aus Artischocke und Kräutern erkennt. Somit leisten die Forscher einen weiteren wichtigen Beitrag zur Aufklärung der molekularen Mechanismen, die der Geschmackswahrnehmung zugrunde liegen.

"Unsere Zellkulturexperimente weisen darauf hin, dass der Bittergeschmack-Rezeptor TAS2R46 für die Wahrnehmung des bitteren Artischockengeschmacks verantwortlich ist, der durch die Bitterstoffe Cynaropicrin und Grosheimin hervorgerufen wird", sagt Anne Brockhoff, Erstautorin der Studie. "Daneben aktivieren aber auch noch andere Bitterstoffe aus Kräutern wie Beifuss, sowie Strychnin und Denatonium den Rezeptor. Der TAS2R46 besitzt damit ein sehr breit gefächertes Erkennungsprofil, das für die Wahrnehmung verschiedenster Bitterstoffe eine Rolle zu spielen scheint."

Die meisten der vom TAS2R46 detektierten Bitterstoffe lassen sich der Gruppe der Sesquiterpenlactone zuordnen. Viele dieser Substanzen sind pharmakologisch wirksam. Zu ihnen zählt auch das wirkungsvolle Malariamittel Artemisinin, das aus Blättern und Blüten des einjährigen Beifuss gewonnen wird. Die Ergebnisse der Forschergruppe deuten darauf hin, dass die Gamma- und Delta-Lactonringe der Bitterstoffe für die Aktivierung des Rezeptors entscheidend sind.

"Unsere eigenen Daten und die anderer Forschergruppen lassen vermuten, dass die meisten Bittergeschmack-Rezeptoren eher eine breite Palette von Bitterstoffen detektieren als spezifisch einen einzigen. Dies könnte erklären, wie der Mensch mit nur 25 verschiedenen Bittergeschmack-Rezeptoren mehrere tausend unterschiedliche Bittersubstanzen erkennen kann", erklärt Meyerhof. "Wenn es uns gelingt, die Eigenschaften der Rezeptoren so genau wie möglich zu bestimmen, wird es möglich sein, die molekularen Zusammenhänge zwischen Geschmackswahrnehmung und Ernährungsverhalten aufzuklären."

Anne Brockhoff et al.: Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium. Journal of Agricultural and Food Chemistry (2007)

Hintergrundinformation:

Der Geschmack ist von herausragender Bedeutung für die Nahrungsmittelauswahl sowie für die Ausbildung von Geschmacksvorlieben und -abneigungen. Damit beeinflusst er die Ernährung und schließlich unsere Gesundheit. Jedoch sind viele Prinzipien der gustatorischen Wahrnehmung und ihre Beziehung zum Ernährungsverhalten noch unbekannt. Die Abteilung von Wolfgang Meyerhof am DIfE hat es sich daher zur Aufgabe gemacht, den Einfluss der Geschmacks- und Geruchswahrnehmung auf das Ernährungsverhalten und die Gesundheit zu untersuchen. Die Forscher isolierten bereits Gene für die menschlichen Duftstoff-, Bittergeschmack- und Süßgeschmack-Rezeptoren. Gleichzeitig entwickelten sie zellbasierte Messverfahren, um die molekularen Eigenschaften der Rezeptoren zu bestimmen und neuartige geschmacksaktive Substanzen aufzufinden. Bisherige Versuche zeigen, dass die Rezeptoreigenschaften die Geschmacksempfindlichkeit menschlicher Versuchspersonen verursachen und dass Wahrnehmungsunterschiede in der Bevölkerung durch Polymorphismen (Variationen) in den Rezeptorgenen bedingt sein können. Die Auswirkungen dieser Zusammenhänge auf das Ernährungsverhalten sind bisher nicht erforscht. Die molekulare Evolution der Rezeptorgene spricht jedoch dafür, dass der Bittergeschmack eine wichtige Rolle während der Menschheitsentwicklung spielte.

Das Deutsche Institut für Ernährungsforschung Potsdam-Rehbrücke (DIfE) ist Mitglied der Leibniz-Gemeinschaft. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und forschungsnahe Serviceeinrichtungen. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Sie sind von überregionaler Bedeutung und werden von Bund und Ländern gemeinsam gefördert.

Kontakt:

Professor Dr. Wolfgang Meyerhof
Deutsches Institut für Ernährungsforschung
Potsdam-Rehbrücke (DIfE)
Abteilung Molekulare Genetik
Arthur-Scheunert-Allee 114-116
14558 Nuthetal
E-Mail: meyerhof@dife.de
Tel: +49(0)33200 88 282
Dr. Gisela Olias
Referat Presse- und Öffentlichkeitsarbeit
Arthur-Scheunert-Allee 114-116
14558 Nuthetal
Tel.: +49(0)33200-88 278/335
E-Mail: olias@dife.de

Dr. Gisela Olias | idw
Weitere Informationen:
http://www.leibniz-gemeinschaft.de

Weitere Berichte zu: Bitterstoffe DIfE Ernährungsverhalten Rezeptor TAS2R46

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie