Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Funktionseinheit "Durchflusszytometrie" macht Forschern das Leben leichter

25.06.2007
Durchflusszytometer und Zellsortierer sind aus Medizin und Biologie nicht mehr wegzudenken. Die Anpassung der Geräte auf neue Fragestellungen erfordert jedoch oft großes Know-how. Am Uniklinikum Bonn berät eine so genannte Funktionseinheit beim Umgang mit der Technik und bei der Weiterentwicklung experimenteller Methoden. In den USA schon lange etabliert, steckt die Idee der Funktionseinheiten in Deutschland noch in den Kinderschuhen.

Das elektronische Aschenputtel am Institut für Molekulare Medizin und Experimentelle Immunologie (IMMEI) hat gerade Pause. Daneben steht Dr. Elmar Endl und preist die Dienste des Geräts an: "Mehrere 10.000 Zellen pro Sekunde kann das Gerät analysieren und sortieren", sagt er. Die guten ins Töpfchen, die schlechten ins Kröpfchen, rasend schnell und nahezu fehlerfrei. "Zumindest wenn man weiß, wie es geht."

Endl weiß, wie es geht. Seine Mitarbeiter und er verfügen in punkto "Zellsortierung" über eine Expertise, auf die selbst Kollegen anderer Forschungseinrichtungen gerne zurückgreifen. Der Physiker leitet auf dem Bonner Venusberg die Funktionseinheit "Durchflusszytometrie" - eine in der Wissenschaftsstadt einzigartige Einrichtung. "Wir trainieren Kollegen im Umgang mit empfindlichen zellbiologischen Geräten. Außerdem entwickeln wir mit ihnen zusammen die experimentellen Methoden weiter, mit denen sie ihre Projekte bearbeiten können."

Einfaches Funktionsprinzip mit vielen Tücken

... mehr zu:
»Düse »Funktionseinheit »Tropfen

Beispiel Zellsortierer: Eigentlich funktioniert das elektronische Aschenputtel wie ein Tintenstrahldrucker - es ist nur schwieriger zu bedienen. Zunächst wird dem Nährmedium ein Farbstoff zugesetzt, der nur Zellen mit den gesuchten Eigenschaften markiert - beispielsweise solche, die ein bestimmtes Eiweißmolekül produzieren. Dann wird die "Zellbrühe" durch eine feine Düse getrieben. Dahinter passiert sie einen Laser, in dem die Zellen Farbe bekennen, und wird dabei digital ausgelesen. Die Düse vibriert, so dass der Strahl nach einigen Zehntel Millimetern in einzelne Tropfen zerfällt. Diese Tropfen sind im Idealfall so groß, dass genau eine Zelle hineinpasst. Hat die eingesperrte Zelle die richtige Farbe, lädt der Sortierer den Tropfen blitzschnell elektrostatisch auf. In einem elektrischen Feld können die gewünschten Zellen dann gezielt zur Seite gezogen und gesammelt werden.

Was sich so einfach anhört, hat in der Praxis viele Tücken: So muss der Strahl genau an der passenden Stelle zerfallen, und der Tropfen muss exakt zum richtigen Zeitpunkt erfasst werden. Gerade bei empfindlichen oder sehr großen Zellen müssen zudem alle Parameter passen, damit die auftretenden Kräfte die kostbare Fracht nicht zerstören. "Wir setzen uns mit den Wissenschaftlern zusammen und entwickeln mit ihnen das passende experimentelle Protokoll", sagt Endls Mitarbeiter Andreas Dolf.

In den USA sind derartige "Funktionseinheiten" schon lange etabliert. In Deutschland beginnt sich die Idee aber gerade erst durchzusetzen. Dabei liegen die Vorteile auf der Hand: Der Umgang mit der empfindlichen Technik erfordert oft jahrelange Erfahrung. Zudem entwickeln sich die Methoden ständig weiter. Ein Wissenschaftler, der ein bestimmtes Gerät nur hin und wieder nutzt, kann sich gar nicht auf dem neuesten Stand halten. Auch ist es effizienter, wenn sich nicht jede Arbeitsgruppe ein teueres Gerät anschafft, das ein paar Mal zum Einsatz kommt und dann in irgendeiner Ecke verstaubt.

Das ist auch einer der Gründe, warum die Gutachter des Bonner Sonderforschungsbereichs 704 "Molekulare Mechanismen und chemische Modulation der lokalen Immunregulation" die Funktionseinheit Durchflusszytometrie als wünschenswertes und förderungswürdiges Projekt eingestuft haben. "Die Gruppe um Dr. Endl hat damit eine kompetente Plattform aufgebaut, die den Wissenschaftlern einen einfachen Zugang zu notwendigen Schlüsseltechnologien ermöglicht", sagt Professor Dr. Percy Knolle, Direktor des IMMEI und zweiter Sprecher des Sonderforschungsbereichs.

Stärke durch Vielfalt

"Wir verstehen uns aber nicht als Serviceleister", betont Dr. Endl. "Ein Großteil unserer Zeit fließt in die wissenschaftliche Planung der Experimente: Wir beraten, welche Methoden am geeignetsten sind, um die jeweilige Fragestellung zu untersuchen, oder entwickeln neue Lösungsansätze. Die Vielfalt unserer Kooperationen bildet dabei die Grundlage für unseren Erfahrungsschatz." Aufgrund der Vielzahl der Anfragen müssen Endl und seine Mitarbeiter hier mittlerweile eine Auslese vornehmen. "Dabei bevorzugen wir Studien, die sowohl methodisch als auch wissenschaftlich neue Erkenntnisse versprechen." Positives Beispiel dafür ist eine Zusammenarbeit mit dem Max-Planck-Instituts für Züchtungsforschung in Köln, deren Ergebnisse kürzlich in der Zeitschrift "Nature" publiziert wurden.

Kontakt:
Dr. Elmar Endl
Funktionseinheit Durchflusszytometrie
Telefon: 0228/287-11028
E-Mail: elmar.endl@ukb.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Düse Funktionseinheit Tropfen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie