Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Neuronen Glutamat ausschütten

15.09.2000


... mehr zu:
»Glutamat »Nervenzelle »Neuron »Protein »Prozess
Wissenschaftler um Prof. Reinhard Jahn am Max-Planck-Institut für biophysikalische Chemie haben jetzt einen entscheidenden weiteren Prozess bei der Erregung von Nervenzellen aufgeklärt. Um Signale zwischen Zellen
zu übermitteln, setzt die vorgeschaltete Zelle einen Transmitter frei - häufig Glutamat -, der dort in kleinen Bläschen (Vesikeln) gespeichert ist. Aber wie kommt das Glutamat in die Vesikel hinein? In einer gerade erschienenen Veröffentlichung in Nature weisen die Wissenschaftler nach, dass die Glutamat-Speicherung durch ein bestimmtes Protein, das BNPI, bewirkt wird. Diese Beobachtung fördert nicht nur das Verständnis neuronaler Übertragungsprozesse, sondern macht auch Hoffnungen auf Behandlungsmöglichkeiten bestimmter Krankheiten, bei denen die Glutamat-abhängige Signalübertragung gestört ist.
Originalveröffentlichung: Takamori, S., Rhee, J.S., Rosenmund, C., Jahn, R., Nature 407, 189-194 (2000).

Glutamat ist eine Aminosäure, die überall im Körper vorkommt. Im Gehirn hat es eine besondere Aufgabe, es dient als Neurotransmitter bei der Signalübertragung zwischen Nervenzellen. Dazu wird Glutamat in vielen Nervenendigungen in kleinen Bläschen, den sogenannten synaptischen Vesikeln, gespeichert. Nervenzellen sind durch einen kleinen "synaptischen Spalt" von einander getrennt, den Signale bei der Weiterleitung überwinden müssen. Wird die vorgeschaltete Nervenzelle aktiviert, gibt sie den Inhalt der Vesikel in den synaptischen Spalt frei, Glutamat erreicht die nachgeschaltete Zelle und löst dort eine neue Aktivierung aus. So können Signale in komplexen Neuronennetzen übertragen werden, ohne dass sich die Nervenzellen berühren müssen, und so werden im Gehirn hoch-komplizierte Verschaltungswege in dichten Ansammlungen von Nervenzellen realisiert.

Einige Prozesse dieses Erregungsablaufs sind inzwischen schon recht gut verstanden. Neben Glutamat ausschüttenden Neuronen gibt es z.B. auch solche, die GABA freisetzen, einen Neurotransmitter, der die Erregung nachgeschalteter Zellen unterdrückt und damit die Signalübertragung von anderen Zellen behindert. Weitgehend unklar war aber bisher noch immer, wie ein Neuron überhaupt in die Lage versetzt wird, den Transmitter Glutamat freizusetzen. Dazu haben die Wissenschaftler Shigeo Takamori, Jeong Seop Rhee, Christian Rosenmund und Reinhard Jahn aus den Abteilungen Neurobiologie und Membranphysik am Max-Planck-Institut für biophysikalische Chemie jetzt neue Erkenntnisse gewonnen.

Nachdem das Glutamat in den synaptischen Spalt gelangt ist und über eine Reihe von Prozessen die nachgeschaltete Nervenzelle erregt hat, muss es von dort wieder entfernt werden, um die Möglichkeit für einen neuen Signal-Übertragungsprozess zu schaffen. Das besorgen andere Zellen, Astrogliazellen, die das umherschwimmende Glutamat wie ein Staubsauger aus dem Spalt entfernen. Diese Zellen geben es in etwas anderer Form, als Glutamin, wieder ab, in der es von den Nervenzellen aufgenommen und wieder in Glutamat zurückverwandelt wird. Die Arbeitsgruppe am MPI in Göttingen hat jetzt zeigen können, dass die Aufnahme und Speicherung von Glutamat in den Vesikeln durch ein bestimmtes Protein, BNPI, bewerkstelligt wird, das Glutamat aus dem umgebenden Intrazellulärraum in die Vesikel pumpt. Führt man dieses Protein in hormonsezernierende Zellen ein, schütten diese neben ihrem eigentlichen Hormon auch Glutamat aus. Die Wissenschaftler konnten sogar Nervenzellen, die normalerweise nur GABA ausschütten, durch Einbau des BNPI dazu bewegen, neben GABA auch Glutamat auszuschütten - also zwei Transmitter gleichzeitig freizusetzen, was in dieser Form in der Natur nicht vorkommt. Diese Beobachtungen belegen, dass BNPI die entscheidende Rolle bei der vesikulären Speicherung von Glutamat spielt.

Das weckt Hoffnungen für eine gezielte Steuerung der Glutamat-Übertragung im Nervensystem. Viele neurologische Krankheiten, von der Epilepsie bis zu chronisch degenerativen Störungen wie der Chorea Huntington, gehen mit Änderungen der Glutamat-Übertragung einher. Die Beobachtung, dass diese Übertragung durch ein bestimmtes Molekül zustande kommt, lässt hoffen, dass man in naher Zukunft die genetischen Ursachen dieser Krankheiten besser verstehen und Medikamente entwickeln kann, mit denen man diese Krankheiten behandeln und vielleicht sogar verhindern kann.


Für Rückfragen:
Prof. Dr. Reinhard Jahn, Max-Planck-Institut für biophysikalische Chemie, Abt. Neurobiologie, 37070 Göttingen; Tel.: 0551 201 1635; Fax: 0551 201 1639; eMail: rjahn@gwdg.de

(Die Meldung steht Ihnen auch im Internet zum Download zur Verfügung: http://www.mpibpc.gwdg.de/abteilungen/293/PR/00_08/glutamat.html
Wenn möglich, wird sie dort Anfang nächster Woche noch durch ein Bild ergänzt.)

Weitere Informationen finden Sie im WWW:

Dr. Christoph R. Nothdurft |

Weitere Berichte zu: Glutamat Nervenzelle Neuron Protein Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
21.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
18.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics