Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum tut Frieren weh?

14.06.2007
Mit steifgefrorenen Fingern einen Knoten im Schnürsenkel zu lösen ist schwierig. Das Gefühl fehlt und Nerven wie Muskeln verrichten ihren Dienst nur widerwillig. Weh tun die eiskalten Finger trotzdem - umso mehr, wenn man sie noch einklemmt. So unangenehm das ist: es schützt uns vor unbemerkter Erfrierung.

Wie das funktioniert, hat nun eine Gruppe am Institut für Physiologie und Pathophysiologie der Universität Erlangen-Nürnberg zusammen mit Forschern der Anästhesiologischen Klinik und einer englischen Arbeitsgruppe herausgefunden. Die Nervenendigungen, die Schmerzsignale an das Gehirn senden können, besitzen eine frostfeste Zündvorrichtung für Nervenimpulse. Die Fachzeitschrift "Nature" berichtet darüber in ihrer Ausgabe in dieser Woche.

Um ordentlich zu funktionieren, müssen Nervenendigungen und -fasern explosionsartige kleine elektrische Natriumionenströme ausbilden können, die zum Nervenimpuls (Aktionspotential) führen. Ihre Schleusen, die Natriumkanäle, öffnen und schließen aber bei Kälte immer langsamer, bis sie schließlich buchstäblich "einfrieren". Sie geraten in einen Zustand der "slow inactivation", der auf einen Kälteblock hinausläuft. Nur ein ganz spezieller Typ von Natriumkanal, der NaV1.8, erwies sich als verblüffend kälteresistent; er wird zwar auch träger, blockiert aber nicht und kann auch bei 10°C in der Haut noch fortgeleitete Aktionspotentiale auslösen.

NaV1.8 war früher schon aufgefallen, weil er sich nicht durch das Gift des schmackhaften, aber für Sushi viel zu teuren Fugu-Fisches aus dem Pazifik blockieren lässt. Die meisten anderen Natriumkanäle reagieren im Gegensatz dazu höchst empfindlich auf das Tetrodotoxin (TTX) aus den Eingeweiden des Kugelfisches - mit tödlichen Folgen für den Genießer. Eine zweite Auffälligkeit war, dass NaV1.8 ausschließlich in den auf Schadensmeldung spezialisierten Nervenendigungen und -zellen, den "Nozizeptoren", gefunden wird. Die besitzen zwar für den Normalbetrieb auch TTX-empfindliche Natriumkanäle. Für den Notbetrieb bei Kälte aber verfügen sie, wie sich jetzt gezeigt hat, zusätzlich über den NaV1.8-Kanal, so dass sie Kälteschmerz oder anderen Schmerz aus kalten Gliedmaßen signalisieren können. Normalerweise hängt die Erregbarkeit dieser Nervenfasern kaum von NaV1.8 ab; dafür ist seine Reizschwelle auch zu hoch. Bei Kälte aber steigt der elektrische Widerstand der Zellmembranen. Die Isolation zwischen innen und außen wird stärker und von den winzigen Entladungen der Nervenendigungen geht weniger durch Kurzschluss verloren. Auf diese Weise wird die hohe Schwelle von NaV1.8 doch erreicht und der Notbetrieb gesichert.

Ansatzpunkt für Schmerzmittel

Die Ausschließlichkeit, mit der NaV1.8 nur in Nozizeptoren auftritt, die Schmerz melden können, hat den Natriumkanal zu einem erstklassigen "target", einem Ansatzpunkt der Pharmaindustrie gemacht. Sie durfte hoffen, durch seine medikamentöse Blockade Schmerzen ohne Nebenwirkung - sozusagen straflos - auszuschalten. Umso größer war die Enttäuschung, als es einer Arbeitsgruppe um Prof. John Wood vom University College London vor acht Jahren zwar gelang, NaV1.8 bei Mäusen gentechnisch auszuschalten, doch den Tieren mangelte es bei den verschiedensten Schmerzreizen trotzdem kaum an Empfindlichkeit. Nur schmerzhafte Kälte hatte bei den Tests gefehlt, was jetzt nachgeholt wurde. Die Versuche zeigten, dass die Mäuse in freier Wildbahn höchst gefährdet wären: sie frieren zwar, spüren aber offenbar keinen Kälteschmerz. In allerneuester Zeit haben die amerikanischen Firmen Abbott und Icagen ein mögliches künftiges Schmerzmittel vorgestellt, das bevorzugt NaV1.8 blockiert. Es wirkt (tierexperimentell) besonders gut gegen "Kälteallodynie", eine schmerzhafte Kälteüberempfindlichkeit, die bei peripheren Nervenleiden auftritt. Die Erlanger Forschung erklärt diese Wirksamkeit.

Bei den Forschungsarbeiten bewährte sich die Zusammenarbeit der Arbeitsgruppe von Prof. Dr. Peter Reeh am Institut für Physiologie und Pathophysiologie mit den Anästhesiologen Dr. Andreas Leffler und Prof. Carla Nau , die im Sonderforschungsbereich 353 "Pathobiologie der Schmerzentstehung und Schmerzbehandlung" begonnen wurde. Die Forschungen in der experimentellen Anästhesiologie am Erlanger Universitätsklinikum werden jetzt im DFG-Schwerpunkt KFO130 gefördert. An der Nature-Publikation war auch das Team von Prof. John Wood maßgeblich beteiligt.

Weitere Informationen für die Medien:

Prof. Dr. Peter W. Reeh
Institut für Physiologie und Pathophysiologie
Tel.: 09131/85-22228
reeh@physiologie1.uni-erlangen.de

Ute Missel | idw
Weitere Informationen:
http://www.uni-erlangen.de/

Weitere Berichte zu: Kälte NaV1 Natriumkanäle Nervenendigungen Schmerz

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie