Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zum Anti-Tumor-Impfstoff

12.06.2007
Thioether als immunologisch geeignete Verknüpfung zwischen Tumor-Antigen und Trägerprotein

Wie bringt man den Körper dazu, mit den eigenen Waffen des Immunsystems gegen Krebs vorzugehen? Im Prinzip nicht anders als im Fall von Infektionskrankheiten: Durch eine Impfung. Einen selektiven Impfstoff herzustellen, ist allerdings keine triviale Aufgabe. Ein Team um Horst Kunz von der Universität Mainz hat nun einen Weg gefunden, ein tumortypisches Molekül an ein Trägerprotein zu knüpfen, ohne das Immunsystem zu irritieren. Wie sie in der Zeitschrift Angewandte Chemie berichten, basiert die Methode auf der immunkompatiblen Verknüpfung über ein Schwefelatom, einen Thioether.

Epitheliale Tumorzellen tragen ungewöhnlich hohe Mengen des Mucins MUC1 auf ihrer Oberfläche, das zudem im Vergleich zu seinen "normalen" Vettern in ganz charakteristischer Weise verändert ist. Mucine, Schleimstoffe, die die Oberfläche von Schleimhäuten schützen, sind Glycoproteine - Makromoleküle mit einer zentralen Eiweißkette und langen Seitenketten aus Zuckerverbindungen (Polysacchariden). Dieses veränderte MUC1 wäre ein geeignetes Zielmolekül (Antigen) für Antikörper im Rahmen einer immunologischen Antitumortherapie.

Die Schwierigkeit liegt darin, dass solche zuckerhaltigen Verbindungen ausgesprochen ineffektiv beim Stimulieren des Immunsystems zur Bildung von Antikörpern sind. "Die Immunisierung gelingt erst, wenn sie über einen Abstandhalter an einem immunisierenden Trägerprotein verankert werden," erklärt Kunz. Was sich bei Zuckerketten noch recht simpel verwirklichen lasse, gestalte sich bei Glycoproteinen sehr kompliziert, denn der Proteinteil trage viele reaktive Atomgruppierungen, die bei einer Verknüpfungsreaktion angegriffen werden. "Zudem," so Kunz, "sind viele an sich als Anker geeignete Strukturen selber hoch immunogen, sodass die Immunantwort gegen das eigentlich Ziel, das Glycoprotein, unterdrückt sein kann."

Das Team fand nun einen geeigneten Verankerungsweg: Ihr Anker ist ein so genannter Thioether (zwei über ein Schwefelatom miteinander verbundene Kohlenstoffatome). Das Trägerprotein wird dazu zunächst mit einem Abstandhalter versehen, an dessen Ende eine Allylgruppe (zwei über eine Doppelbindung verbundene Kohlenstoffatome) hängt. Das Gylcopeptid wird mit einem Baustein gekuppelt, der Thiole (Schwefel-Wasserstoff-Gruppen) aus dem Molekül ragen lässt. Bei der folgenden, durch Licht initiierten (photochemischen) Reaktion werden ausschließlich die gewünschten Thioetherbindungen geknüpft, Nebenreaktionen an anderen Stellen der Peptidkette finden nicht statt.

"Synthetische Glycopeptidantigene, die tumortypische Strukturelemente sowohl im Zucker- als auch im Eiweißteil tragen," erklärt Kunz, "können auf diese Weise kontrolliert mit Trägerproteinen verbunden werden. Die kaum immunogenen Thioether-Brücken könnten den Weg für die Entwicklung von Vakzinen zur Aktivimmunisierung gegen Tumorzellen ebnen."

Angewandte Chemie: Presseinfo 23/2007

Autor: Horst Kunz, Universität Mainz (Germany), http://www.uni-mainz.de/FB/Chemie/AK-Kunz/akkunz.htm

Angewandte Chemie 2007, 119, No. 27, doi: 10.1002/ange.200700964

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://presse.angewandte.de

Weitere Berichte zu: Glycoprotein Immunsystem Kohlenstoffatome Thioether Trägerprotein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE