Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zum Anti-Tumor-Impfstoff

12.06.2007
Thioether als immunologisch geeignete Verknüpfung zwischen Tumor-Antigen und Trägerprotein

Wie bringt man den Körper dazu, mit den eigenen Waffen des Immunsystems gegen Krebs vorzugehen? Im Prinzip nicht anders als im Fall von Infektionskrankheiten: Durch eine Impfung. Einen selektiven Impfstoff herzustellen, ist allerdings keine triviale Aufgabe. Ein Team um Horst Kunz von der Universität Mainz hat nun einen Weg gefunden, ein tumortypisches Molekül an ein Trägerprotein zu knüpfen, ohne das Immunsystem zu irritieren. Wie sie in der Zeitschrift Angewandte Chemie berichten, basiert die Methode auf der immunkompatiblen Verknüpfung über ein Schwefelatom, einen Thioether.

Epitheliale Tumorzellen tragen ungewöhnlich hohe Mengen des Mucins MUC1 auf ihrer Oberfläche, das zudem im Vergleich zu seinen "normalen" Vettern in ganz charakteristischer Weise verändert ist. Mucine, Schleimstoffe, die die Oberfläche von Schleimhäuten schützen, sind Glycoproteine - Makromoleküle mit einer zentralen Eiweißkette und langen Seitenketten aus Zuckerverbindungen (Polysacchariden). Dieses veränderte MUC1 wäre ein geeignetes Zielmolekül (Antigen) für Antikörper im Rahmen einer immunologischen Antitumortherapie.

Die Schwierigkeit liegt darin, dass solche zuckerhaltigen Verbindungen ausgesprochen ineffektiv beim Stimulieren des Immunsystems zur Bildung von Antikörpern sind. "Die Immunisierung gelingt erst, wenn sie über einen Abstandhalter an einem immunisierenden Trägerprotein verankert werden," erklärt Kunz. Was sich bei Zuckerketten noch recht simpel verwirklichen lasse, gestalte sich bei Glycoproteinen sehr kompliziert, denn der Proteinteil trage viele reaktive Atomgruppierungen, die bei einer Verknüpfungsreaktion angegriffen werden. "Zudem," so Kunz, "sind viele an sich als Anker geeignete Strukturen selber hoch immunogen, sodass die Immunantwort gegen das eigentlich Ziel, das Glycoprotein, unterdrückt sein kann."

Das Team fand nun einen geeigneten Verankerungsweg: Ihr Anker ist ein so genannter Thioether (zwei über ein Schwefelatom miteinander verbundene Kohlenstoffatome). Das Trägerprotein wird dazu zunächst mit einem Abstandhalter versehen, an dessen Ende eine Allylgruppe (zwei über eine Doppelbindung verbundene Kohlenstoffatome) hängt. Das Gylcopeptid wird mit einem Baustein gekuppelt, der Thiole (Schwefel-Wasserstoff-Gruppen) aus dem Molekül ragen lässt. Bei der folgenden, durch Licht initiierten (photochemischen) Reaktion werden ausschließlich die gewünschten Thioetherbindungen geknüpft, Nebenreaktionen an anderen Stellen der Peptidkette finden nicht statt.

"Synthetische Glycopeptidantigene, die tumortypische Strukturelemente sowohl im Zucker- als auch im Eiweißteil tragen," erklärt Kunz, "können auf diese Weise kontrolliert mit Trägerproteinen verbunden werden. Die kaum immunogenen Thioether-Brücken könnten den Weg für die Entwicklung von Vakzinen zur Aktivimmunisierung gegen Tumorzellen ebnen."

Angewandte Chemie: Presseinfo 23/2007

Autor: Horst Kunz, Universität Mainz (Germany), http://www.uni-mainz.de/FB/Chemie/AK-Kunz/akkunz.htm

Angewandte Chemie 2007, 119, No. 27, doi: 10.1002/ange.200700964

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://presse.angewandte.de

Weitere Berichte zu: Glycoprotein Immunsystem Kohlenstoffatome Thioether Trägerprotein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Internationale Forschungskooperation will Altersbedingte Makuladegeneration überwinden
23.02.2018 | Universitätsklinikum Regensburg (UKR)

nachricht „Molekularer Schraubstock“ ermöglicht neue chemische Reaktionen
23.02.2018 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Molekularer Schraubstock“ ermöglicht neue chemische Reaktionen

23.02.2018 | Biowissenschaften Chemie

Internationale Forschungskooperation will Altersbedingte Makuladegeneration überwinden

23.02.2018 | Biowissenschaften Chemie

Workshop zu flexiblen Solarzellen und LEDs auf der Energiemesse „New Energy“

23.02.2018 | Seminare Workshops

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics