Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die zelleigene Micro-RNA miR-34a unterdrückt die Teilung von Tumorzellen

11.06.2007
Das p53 Tumorsuppressor-Gen unterdrückt Zellteilung und induziert Zelltod durch Aktivierung von Micro-RNAs. Max-Planck-Wissenschaftler liefern den eindeutigen Beweis.

Spätestens durch die Verleihung des Medizin-Nobelpreises 2006 an Andrew Z. Fire und Craig C. Mello sind kurze Ribonukleinsäuren, sogenannte Micro-RNAs und "small interfering RNAs", auch in der Öffentlichkeit bekannt geworden. Sie haben eine große Bedeutung als Regulatoren von Genexpression und zellulären Signalketten und sind damit auch mögliche Zielmoleküle für die moderne Krebstherapie. Wissenschaftler am Max-Planck-Institut (MPI) für Biochemie in Martinsried zeigten jetzt erstmals, dass das Proteinprodukt des Tumorsuppressor-Gens p53 direkt auf die Bildung von Micro-RNAs Einfluss nimmt. (Open Access Publikation in Cell Cycle, 6 (13), e1-e8 (2007)).

Zellen besitzen Kontroll-Mechanismen, die DNA-Schädigung erkennen und reparieren oder bei zu starken Schäden den programmierten Zelltod einleiten bzw. die Zellteilung unterdrücken, um die Entstehung von Krebs zu verhindern. Ein zentraler Knotenpunkt dabei ist das p53 Gen, das daher auch als Tumorsuppressor-Gen bezeichnet wird. In 50-60% der am häufigsten vorkommenden Krebserkrankungen ist p53 verändert und kann daher seine Tumorunterdrückungs-Funktion nicht mehr ausüben. Die Schädigung der DNA kann durch chemische Substanzen, wie z. B. Benzo(a)pyren in Zigaretten-Rauch, durch UV-Strahlung und auch durch die Aktivierung von Onkogenen entstehen.

Die Forschungsgruppe Molekulare Onkologie hat unter Leitung von Heiko Hermeking am MPI für Biochemie jetzt untersucht, ob der Transkriptionsfaktor p53 die Bildung von Micro-RNAs, beeinflusst und dadurch die Zellteilung unterdrückt. Unterstützt wurden sie dabei von Gunter Meister, einem Spezialisten für die Biochemie der Micro-RNA-Prozessierung, der ebenfalls eine Arbeitsgruppe am MPI für Biochemie leitet. Um die Bildung von Micro-RNAs unter kontrollierten Bedingungen untersuchen zu können, setzten Valery Tarasov, Peter Jung, Berlinda Verdoodt, Dmitri Lodygin, Antje Menssen, Gunter Meister und Heiko Hermeking regulierbare, sogenannte episomale Vektoren ein, mit denen p53 in Lungenkrebs-Zellen ein- und ausgeschaltet werden konnte. In dem sie jeweils 100.000 kleine RNAs aus Zellen mit und ohne p53 Aktivierung sequenzierten, fanden sie signifikante Unterschiede in der Häufigkeit von bestimmten Micro-RNAs. So wurden 34 Micro-RNAs induziert und 16 wurden vermindert gebildet wenn p53 aktiv war. Hierzu wurden 20 Millionen Basenpaare sequenziert, was mittels der sog. 454-Sequenzierung, einer neuartigen Hochdurchsatz-Methode, möglich war.

"Ganz besonders auffallend war die Zunahme der Micro-RNA miR-34a, die mehr als 30-fach durch p53 induziert wurde", so Heiko Hermeking, der die Studie leitete. "Wir fanden dann heraus, daß miR-34a nur in Zellen mit intaktem p53 durch DNA-Schädigung induziert wird. Zusätzlich konnten wir nachweisen, dass das p53 Protein direkt am miR-34a Gen sitzt und dieses anschaltet. Die Wiedereinführung von miR-34a in Tumorzellen löste Zelltod aus und verhinderte zudem die Zellteilung. So war klar, wie miR-34a zur Unterdrückung von Tumorwachstum beiträgt." Die Arbeit der Molekularbiologen am Max-Planck-Institut für Biochemie wirft ganz neues Licht in die Aufklärung der komplexen Regulationsaktivität des Tumorwächters p53 und öffnet neue Wege zur Entwicklung von gezielter Tumortherapie mit Hilfe von Micro-RNAs.

Originalpublikation:
Valery Tarasov, Peter Jung, Berlinda Verdoodt, Dmitri Lodygin, Alexey Epanchintsev, Antje Menssen, Gunter Meister, Heiko Hermeking (2007). Differential Regulation of micro-RNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G(1)-arrest. Cell Cycle 6:13, e1-e8, open access publication (2007):

http://www.landesbioscience.com/journals/cc/article/4436

Webpage. Max-Planck-Nachwuchsgruppe Molekulare Onkologie:
http://www.biochem.mpg.de/hermeking
Kontakt:
PD Dr. Heiko Hermeking
Max-Institut für Biochemie
Molekulare Onkologie
Am Klopferspitz 18
D-82152 Martinsried/München
Tel: +49 (0) 89 8578 2875
Fax: +49 (0) 89 8578 2540
herme@biochem.mpg.de

Eva-Maria Diehl | idw
Weitere Informationen:
http://www.biochem.mpg.de/hermeking
http://www.landesbioscience.com/journals/cc/article/4436

Weitere Berichte zu: MPI Micro-RNA Tumorsuppressor-Gen Tumorzelle Zellteilung Zelltod

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie