Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wer mit wem? Göttinger Wissenschaftler entwickelt Methode zur Identifizierung der Verknüpfungsstrukturen von Netzwerken

05.06.2007
Die mathematische Analyse regulatorischer Netzwerke gewinnt für die Biologie immer mehr an Bedeutung - denn solche Netzwerke gibt es überall in der Natur. Die Tier- und Pflanzenarten eines Ökosystems, die Gene und Proteine einer Zelle oder Nervenzellen im Gehirn stellen jeweils ein Netzwerk aus verschiedenen Einheiten dar, die sich gegenseitig beeinflussen.

Marc Timme, Wissenschaftler am Bernstein Center for Computational Neuroscience und am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen, hat nun eine mathematische Methode entwickelt, mit der aus der Reaktion eines regulatorischen Netzwerks auf äußere Veränderungen Rückschlüsse auf dessen Verknüpfungsstruktur gezogen werden können. Überträgt man diese theoretische Methode auf die Praxis, so könnte man die genauen Verbindungen zwischen den Einheiten eines Netzwerks bestimmen - z.B. die Wechselwirkungen zwischen Molekülen in einer Zelle oder die Kontakte in einem neuronalen Netzwerk. Die Arbeit erscheint im Juni in der wissenschaftlichen Zeitschrift "Physical Review Letters".

Voraussetzung für die Methode von Timme ist, dass die Netzwerke in einem stabilen Gleichgewicht sind, wie die Figuren eines ausgependelten Mobiles. Hängt man nun vorsichtig ein kleines Gewicht an eine Figur des Mobiles, kann man dann aus der resultierenden Auf- oder Abwärtsverschiebung der anderen Mobilefiguren auf die Struktur des Mobiles Rückschlüsse ziehen? Und wenn ja, wie oft müsste man das Mobile auf verschiedene Weise mit Gewichten bestücken, um die Verbindungen zwischen allen Figuren eindeutig zu bestimmen? Diesen Fragen ist Timme nachgegangen - nicht für Mobiles, sondern allgemein für regulatorische Netzwerke in einem Gleichgewicht.

Regulatorische Netzwerke gibt es in der Natur viele, ein Beispiel hierfür ist ein neuronales Netzwerk, das wiederkehrende Aktivitätsmuster generiert, um die Atmung oder den Herzrhythmus zu steuern. Verändert man nun gezielt die Dynamik einer Komponente dieses Netzwerks, werden die anderen Komponenten darauf reagieren. Speist man ein neuronales Netzwerk an einer Stelle mit einem Signal, stellt sich ein neuer Zustand ein, der relativ zu dem alten ein wenig verschoben ist - verglichen mit dem ursprünglichen Zustand senden einige Neuronen etwas früher, andere etwas später Signale aus. "Die dynamische Antwort des Netzwerks hängt nicht nur von der Art des Signals ab, sondern auch charakteristisch von der Verbindungs-Struktur des Netzwerks", sagt Timme. Dies konnte er bereits in einer vorangegangenen Arbeit demonstrieren, die im November 2006 in der Zeitschrift "Europhysics Letters" veröffentlicht wurde. Dass sich aus der Antwort des Netzwerks dessen Struktur eindeutig bestimmen lässt und wie man dabei mathematisch vorgeht, hat Timme nun in seiner neuesten Publikation gezeigt. Mit seiner Methode lässt sich nicht nur bestimmen, welche Elemente des Netzwerks miteinander in Verbindung stehen, sondern auch wie stark die jeweiligen Verbindungen sind.

Will man über jede Verbindung eines Netzwerks eine eindeutige Aussage machen, muss man allerdings ziemlich viele Messungen vornehmen. "Um das Netzwerk vollständig zu bestimmen, braucht man für jede Einheit so viele Informationen, wie sie Verbindungen zu anderen Einheiten haben könnte", erklärt Timme, "dazu muss man dann so viele Experimente machen, wie das Netzwerk Einheiten hat." Noch wenige Wissenschaftler haben sich daran gewagt, aus der dynamischen Reaktion eines Netzwerks Rückschlüsse auf dessen Struktur zu ziehen. Darüber hinaus ließen entsprechende mathematische Analysemethoden bisher meist nur statistische Aussagen über den Prozentsatz oder die durchschnittlich zu erwartende Stärke der Verknüpfungen zwischen Einheiten zu. Neu an Timmes Ansatz ist, dass sein mathematisches Modell jede einzelne Verbindung des Netzwerks genau bestimmt. Im Computerexperiment hat er diese Theorie an verschiedenen Netzwerken beispielhaft überprüft.

In der Praxis bestehen regulatorische Netzwerke aus tausenden oder sogar millionen Komponenten und die Messung der Reaktion des Netzwerks auf eine so große Zahl verschiedenartiger Signalen wäre kaum durchführbar. Ein weiterer wichtiger Schritt in der Methode von Timme lässt es dennoch zu, auch die Struktur von großen, komplexen Netzwerken zu bestimmen. Die Natur ist meist sparsam und richtet es so ein, dass eine gewünschte neuronale Funktion in Netzwerken mit nur relativ wenigen Verbindungen erreicht werden kann. Diese Eigenschaft der Sparsamkeit macht sich Timme in seiner Methode zur Bestimmung der Struktur größerer Netzwerke zu Nutze. Wie er zeigen konnte, braucht man, um die Struktur eines sparsam gebauten Netzwerks aufzuklären, weit weniger Experimente als das Netzwerk Komponenten hat. Diese Methode liefert Wissenschaftlern nun die Grundlage für ein Werkzeug, mit dem sich zukünftig der Zusammenhang zwischen Struktur und Funktion regulatorischer Netzwerke systematisch untersuchen lässt.

Originalveröffentlichungen:

Marc Timme (2007). Revealing Network Connectivity From Response Dynamics.
Physical Review Letter, 98:224101 (2007).
Marc Timme (2006). Does dynamics reflect topology in directed networks?
Europhysics Letters 76 (3), 367-373
Kontakt:
Dr. Marc Timme
Network Dynamics Group
Max Planck Institut für Dynamik und Selbstorganisation
Bernstein Center for Computational Neuroscience Göttingen
Bunsenstr. 10
37073 Göttingen
timme@nld.ds.mpg.de
Die Bernstein Centers for Computational Neuroscience (BCCN) sind vier vom BMBF geförderte Zentren in Berlin, Freiburg, Göttingen und München. In dem interdisziplinären Netzwerk werden Experiment, Datenanalyse und Computersimulation auf der Grundlage wohl definierter theoretischer Konzepte vereint. Zentrales Anliegen der Computational Neuroscience ist die Aufklärung der neuronalen Grundlagen von Hirnleistungen, die so z.B. zu neuen Therapien bei neurodegenerativen Krankheiten und Innovationen in der Neuroprothetik führen.

Das BCCN Göttingen ist ein Verbundprojekt der Georg-August-Universität Göttingen, des Max-Planck-Instituts für Dynamik und Selbstorganisation, des Max-Planck-Instituts für biophysikalische Chemie, des Max-Planck-Instituts für experimentelle Medizin, des Deutschen Primatenzentrums und der Otto Bock HealthCare GmbH.

Dr. Tobias Niemann | idw
Weitere Informationen:
http://www.bernstein-zentren.de
http://www.bccn-goettingen.de
http://www.nld.ds.mpg.de/~timme

Weitere Berichte zu: Dynamik Max-Planck-Institut Verknüpfungsstruktur

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Selbstfaltendes Origami
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungsnachrichten

Überschwemmungen genau in den Blick nehmen

27.06.2017 | Informationstechnologie