Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie erhält das Gehirn seine Struktur?

29.05.2007
Jede kognitive Leistung eines Menschen - jede Erinnerung und jeder Gedanke - hängt von der genauen Verknüpfungsstruktur der Neurone in seinem Gehirn ab. Nicht nur während der Embryonalentwicklung, sondern während des ganzen Lebens, werden Verknüpfungen im Gehirn neu gebildet und andere aufgelöst.

Als Teil einer internationalen Kollaboration haben Wissenschaftler des Bernstein Zentrums für Computational Neuroscience in Berlin, mit finanzieller Unterstützung der Berlin School of Mind and Brain, einige wichtige Prinzipien dieser neuronalen Verdrahtung entschlüsselt. Die Studie, die von Joshua Young und Klaus Obermayer von der Technischen Universität Berlin durchgeführt wurde, führt zu einem besseren Verständnis fundamentaler Prozesse der Gehirnentwicklung, wie auch der Reorganisation des Gehirns nach Verletzungen wie zum Beispiel nach einem Schlaganfall oder nach einer Netzhautdegeneration.

Die Arbeit wird am 27. Mai in der Online-Ausgabe der wissenschaftlichen Zeitschrift Nature Neuroscience erscheinen. Weiterhin sind Wissenschaftler der Universität Sydney (Bogdan Dreher, Chun Wang), der Universität Newcastle, Australien (Michael Calford), und des Nencki Institute, Polen (Wioletta Waleszczyk) an der Forschung beteiligt.

Das Gehirn ist ein komplexes Netzwerk aus Neuronen, die über elektrische Signale kommunizieren. Jedes Neuron erhält Signale von vielen anderen vorgeschalteten Neuronen, die es integriert und verrechnet, um dann selbst ein Signal auszusenden. Bisherige Studien zeigen, dass die Weitergabe von Signalen regelrecht geübt werden kann. Wenn eine Zelle A einen Impuls aussendet, der in Zelle B eine Antwort auslöst, wird der Kontakt von der Zelle A zur Zelle B verstärkt. Die Verstärkung des Kontaktes zwischen den beiden Zellen führt wiederum dazu, dass Zelle B nun mit einer höheren Wahrscheinlichkeit auf ein Signal der Zelle A antwortet. Durch diesen Prozess "lernt" Zelle B das Aktivitätsmuster von Zelle A und übernimmt dieses. Wegen dieser einseitigen Übertragung von Aktivitätsmustern nennen die Wissenschaftler dieses Phänomen "didaktische Reorganisation".

... mehr zu:
»Kortex »Neuron »Reorganisation »Zelle

Nach Verletzungen des Gehirns findet in der betreffenden Region eine massive Reorganisation statt. Die Wissenschaftler um Obermayer haben nun genauer untersucht, nach welchen Prinzipien sich Neurone im visuellen Kortex nach einer Verletzung in der Retina reorganisieren. Aus der Reaktion der Neurone auf visuelle Reize nach einer Regenerationsphase konnten die Wissenschaftler Rückschlüsse auf deren Verknüpfungsstruktur ziehen. Sie fanden, dass Neurone ganzer Hirnbereiche ihre Kontakte in einer sehr gleichförmigen Weise umorganisiert hatten. Aus Vergleichen dieser experimentellen Daten mit denen aus Computermodellen konnten die Forscher eindeutig ableiten, dass diese gleichförmige Art und Weise der Neuverschaltung eine Folge "didaktischer Reorganisation" ist.

Der Kortex ist die erste Verschaltungsebene im Gehirn, in der visuelle Signale, die auf die Retina fallen, auf Bildeigenschaften wie den Verlauf von Konturen hin analysiert werden. Bei einer Verletzung der Retina verlieren Neurone in einer kleinen, klar umrissenen Region des visuellen Kortex die entsprechenden Eingangssignale aus der Retina. Durch diesen Verlust von Input antworten die Neurone umso stärker auf Signale von anderen ihnen vorgeschalteten Zellen, in der Regel benachbarte Kortex-Zellen, die noch direkte Signale aus der Retina erhalten. Wegen dieser verstärkten Empfindlichkeit der betreffenden Zellen lässt sich das Prinzip der didaktischen Reorganisation am Beispiel der neuronalen Regeneration nach einer Retinaverletzung besonders eindrücklich demonstrieren.

Die Wissenschaftler gehen davon aus, dass sowohl die Entstehung neuronaler Schaltkreise währende der Entwicklung des Gehirns als auch die verschiedenen Schritte der Regeneration den gleichen grundlegenden Prinzipien folgen. Die Ergebnisse der Wissenschaftler sind ein wesentlicher Schritt im Verständnis dieser Prozesse und bilden damit die Voraussetzung für die Entwicklung besserer Behandlungsmöglichkeiten von Hirnverletzungen.

Originalveröffentlichung:
J. M. Young, W. J. Waleszczyk, C. Wang, M. B. Calford, B. Dreher & K. Obermayer: Cortical reorganization consistent with spike timing- but not correlation-dependent plasticity. Nature Neuroscience (online), 27. Mai 2007, 1900 Uhr CEST
Kontakt:
Joshua Young, Prof. Dr. Klaus Obermayer
Technische Universität Berlin
Fakultät IV - Elektrotechnik und Informatik
Franklinstr. 28/29
10587 Berlin
Tel: 030-314-73442
EMail: sekr@ni.cs.tu-berlin.de

Katrin Weigmann | idw
Weitere Informationen:
http://ni.cs.tu-berlin.de/
http://www.bccn-berlin.de/

Weitere Berichte zu: Kortex Neuron Reorganisation Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscherteam der Universität Bremen untersucht Korallenbleiche
24.04.2017 | Universität Bremen

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung