Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geschickt verpackt

24.05.2007
Wissenschaftler des Max-Planck-Instituts für Polymerforschung simulieren, wie Zellen Membranhüllen produzieren

Auf die Verpackung kommt es an: Auch Zellen schließen Proteine zum Transport in kleine Membranbläschen ein, damit sich diese unterwegs nicht mit anderen Substanzen vermischen. Wie diese Bläschen, die Vesikel, genau gebildet werden, zählt zu den wichtigen Fragen der Zellbiologie. Forscher des Mainzer Max-Planck-Instituts für Polymerforschung haben mittels einer Computersimulation herausgefunden, wie bestimmte Proteine ohne direkte Wechselwirkung untereinander großflächige Ausstülpungen der Membran erzeugen. Der physikalische Mechanismus, den die Wissenschaftler mit ihrer Simulation entdeckten, wirkt möglicherweise auch an anderen Prozessen mit, bei denen Zellmembranen verformt werden. So ließe sich damit etwa die Bildung von Organellen mit stark gekrümmten Oberflächen wie dem Golgi-Apparat und den Mitochondrien beschreiben (Nature, 24. Mai 2007).


Abb. 1: Die Simulation der Max-Planck-Forscher zeigt, wie sich auf einer Membran großflächige Einstülpungen bilden: Auf einer Membran (blau-gelb) haften Proteine (rot), welche die Membran lokal krümmen (a), dies führt zu einer Ausbuchtung (b). In (c) ist ein fast abgeschnürtes Vesikel im Querschnitt zu sehen. Bild: Max-Planck-Institut für Polymerforschung


Abb. 2: Querschnitt durch eine Membran, die von zwei symmetrisch anhaftenden Teilchen stark gekrümmt wird. Bild: Max-Planck-Institut für Polymerforschung

Jede Zelle des menschlichen Körpers ähnelt einer Fabrik auf kleinstem Raum, die unermüdlich tausende Substanzen produziert. Unter anderem müssen Botenstoffe und Zellbausteine synthetisiert und an die richtige Stelle transportiert werden. Für diesen Materialaustausch verfügen Zellen über einen raffinierte Verpackungsmechanismus: Fertige Proteine werden in kleine Bläschen eingeschlossen, die sich aus der Zellmembran abschnüren. Dazu lagern sich spezielle Proteine an der Membranwand an. Diese verformen die Membran - eine Einstülpung entsteht. Im Inneren eines solchen Vesikels eingeschlossene Proteine überstehen den Transport durch die Zelle, ohne sich unterwegs mit anderen Substanzen zu vermischen. Während Zellbiologen die für die Verformung zuständigen Proteine schon seit längerem kennen, wussten sie über den Prozess der Vesikelbildung bisher noch sehr wenig.

Mit einer Computersimulation haben Wissenschaftler um Markus Deserno am Max-Planck-Institut für Polymerforschung in Mainz nun gezeigt, wie Proteine bei der Verformung der Membran zusammenarbeiten: Binden sie an die Membranoberfläche, rufen sie in ihrer unmittelbaren Umgebung eine trichterähnliche Verformung hervor. Ohne direkt miteinander zu wechselwirken, beeinflussen sich die membrangebundenen Proteine indirekt über die Verformung der Membran. Sobald sich zwei Proteine zu nahe kommen und die gekrümmten Membranen überlappen, führt das zu einer Anziehung, aus der bei ausreichend vielen Proteinen eine Membraneinstülpung entsteht. Diese Anordnung der Proteine ähnelt der von zwei nah beieinander liegenden Kugeln auf einem gespannten Gummituch.

"Uns geht es dabei grundsätzlich um die Frage, wie Membranen verformt werden", sagt Markus Deserno. "In der Zelle gibt es zahlreiche Organellen, etwa den Golgi-Apparat oder die Mitochondrien, deren Membranoberflächen auf ganz bestimmte Art und Weise gekrümmt sind. Solche Verformungen kosten viel Energie, und das muss die Zelle irgendwie steuern. Möglicherweise spielen die Mechanismen, die wir entdeckt haben, auch dort eine Rolle."

Zu Beginn der Simulation sind die membrankrümmenden Proteine erst einmal gleichmäßig verteilt. Im Verlauf der Vesikelbildung wandern sie auf der Membran und häufen sich an bestimmten Stellen. "Das ist das einfachste Szenario, von dem wir ausgehen können", sagt Deserno. "Vermutlich macht die Natur das schlauer und bringt Proteine von Anfang gehäuft an bestimmte Stellen." Außerdem mussten die Max-Planck-Forscher auf die Modellierung von einzelnen Atomen verzichten, sonst wäre das Experiment im Computer rechnerisch nicht zu bewältigen gewesen. Denn während die Natur eine Vesikel in wenigen Millisekunden bildet, benötigten die Computercluster des DEISA-Projektes (Distributed European Infrastructure for Supercomputing Applications) dafür mehrere Wochen.

Originalveröffentlichung:

Benedict J. Reynwar, Gregoria Illya, Vagelis A. Harmandaris, Martin M. Müller, Kurt Kremer und Markus Deserno

Aggregation and Vesiculation of membrane proteins by curvature mediated interactionsAggregation and Vesiculation of membrane proteins by curvature mediated interactions. Nature, 24. Mai 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Max-Planck-Institut Membran Protein Verformung Vesikel Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht UVB-Strahlung beeinflusst Verhalten von Stichlingen
13.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften