Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Enzyme im Labor nachgebaut - Katalysatorforschung nach dem Vorbild der Natur

14.05.2007
Katalysatoren säubern nicht nur Autoabgase - sie ermöglichen auch viele biochemische Reaktionen in Lebewesen.

Die aus Millionen Jahren hervorgegangenen Enzyme sind Biokatalysatoren, die weitaus effizienter arbeiten als alle bisher vom Menschen erdachten synthetischen Katalysatoren. Ohne die raffiniert gebauten Proteine würden viele Lebensvorgänge im Körper überhaupt nicht ablaufen, denn die Körpertemperatur ist vergleichsweise niedrig und die Umgebung zumeist wässrig. Dabei liefern Enzyme die benötigten Stoffe zeitlich und mengenmäßig genau auf den Bedarf des Organismus abgestimmt, ohne dabei selbst "verbraucht" zu werden. Dank moderner Strukturaufklärungsmethoden kann man die Funktionsweise der Enzyme inzwischen entschlüsseln. Den Frankfurter Chemikern um Prof. Magnus Rueping ist es in einem weiteren Schritt gelungen, Katalysatoren nach dem Vorbild der Natur zu synthetisieren.

In der neuen Ausgabe von "Forschung Frankfurt" berichten sie, wie die robusten und gut zugänglichen Verbindungen die industrielle Synthese von Aminen vereinfachen. Das sind wichtige Bausteine für Naturstoffe und Pharmazeutika.

Als Modell diente die Glutamat-Dehydrogenase (GDH), ein wichtiges Enzym im Stickstoffzyklus. Es katalysiert die Reaktion von Ammonium-alpha-Ketogluterat und NADH zur Aminosäure Glutamat und NAD+. Beide lagern sich nach dem Schlüssel-Schloss-Prinzip an das aktive Zentrum des Katalysators an. Eine Besonderheit ist in diesem Fall, dass das Reaktionsprodukt auch noch eine bestimmte Händigkeit (Chiralität) besitzt. Grundsätzlich ist eine links- und eine rechtshändige Variante des Moleküls möglich. Da beide Enantiomere aber unterschiedliche chemische Eigenschaften besitzen - was bei vielen Natur- und Wirkstoffen der Fall ist - ist es wichtig, dass nur eine Sorte Enantiomer entsteht. (Die Reaktion muss enantiomerenselektiv sein). Die dazu notwendige asymmetrische Synthese im Labor nachzuahmen ist außerordentlich schwierig, aber von großer technischer Bedeutung.)

... mehr zu:
»Enzym »GDH »Katalysator »Labor »Synthese

Inspiriert vom natürlichen Vorbild der Glutamat-Dehydrogenase (GDH) wählte Rueping beim Nachbau des Katalysators als Grundstruktur ein chirales Molekül - das BINOL-Phosphat - und versah es mit vier verschiedenen Seitenketten. An Stelle des in Lebewesen vorkommenden Protonenspenders NADH setzte er das im Labor gebräuchliche Hantzsch-Dihydropyridin ein. Auf diesem Weg entstanden Amine, die man bisher im Labor nur unter hohem Wasserstoffdruck und der Verwendung metallhaltiger Katalysatoren hatte synthetisieren können. Für die Wirkstoffsynthese, in der Amine eine wichtige Rolle spielen, war die Verwendung solcher Katalysatoren aufgrund ihrer toxischen Eigenschaften bedenklich erschienen.

Anders als sein biologisches Vorbild kann der synthetische Katalysator ein breiteres Reaktionsspektrum katalysieren und ist auch robuster - das heißt, er arbeitet nicht ausschließlich bei 37 Grad und in wässriger Umgebung. Ermutigt durch diese Erfolge hat der Frankfurter Degussa-Stiftungsprofessor das Prinzip der Säure-katalysierten Transferhydrierung, wie es nach dem Vorbild der GDH realisiert wurde, inzwischen auch auf die Synthese von Chinolin-Derivaten angewendet. Diese Stoffklasse ist von großem Interesse für die Chemie, Pharmazie und die Materialwissenschaften. Bisher konnten solche Systeme nur durch lange Syntheserouten enantiomerenrein erhalten werden. Die Ergebnisse sind außerordentlich vielversprechend: Bereits die geringe Menge von einem Katalysatormolekül auf 10.000 Substratmoleküle reicht aus, um eine enantiomerenselektive Reduktion zu katalysieren - das ist die bis heute niedrigste Katalysatormenge, die jemals für eine solche Reaktion eingesetzt wurde. Daraus lässt sich das große Potential der chiralen BINOL-Phosphate für industrielle Anwendungen erschließen.

Informationen:
Prof. Magnus Rueping, Degussa Stiftungsprofessur für Organische Synthetik, Campus Riedberg, Max-von-Laue-Str. 7, 60438 Frankfurt am Main; Tel: (069) 798-29223., rueping@chemie.uni-frankfurt.de

Lesen Sie mehr dazu in der neuen Ausgabe von "Forschung Frankfurt".

Soeben erschienen: Wissenschaftsmagazin "Forschung Frankfurt" 1/2007

Kostenlos anfordern: steier@pvw.uni-frankfurt.de

Im Internet:
www.muk.uni-frankfurt.de
Publikationen/FFFM/2007/index.html

Stephan M. Hübner | idw
Weitere Informationen:
http://www.muk.uni-frankfurt.de

Weitere Berichte zu: Enzym GDH Katalysator Labor Synthese

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Neues Unterwasser-Observatorium bei Boknis Eck
19.01.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie

Kieler Forscher koordiniert millionenschweres Verbundprojekt in der Entzündungsforschung

19.01.2017 | Förderungen Preise

Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen

19.01.2017 | Biowissenschaften Chemie