Viel Wirbel um die Fledermaus

Fledermäuse sind seltsame Geschöpfe mit außergewöhnlichen Fähigkeiten, die immer wieder die Neugierde der Forscher wecken. Die kleinsten Säuger der Erde „sehen“ mit den Ohren und fliegen mit den „Händen“. Obwohl diese Handflügel den Flügeln von Vögeln sehr ähnlich sind, konnten die Forscher unerwartete Unterschiede im Flugverhalten feststellen. Die aerodynamischen Luftwirbel, die im Flug für den nötigen Auftrieb sorgen, sind weitaus komplexer als bisher geglaubt.

Gemessen haben dies Biologen der Universität München und des Max-Planck-Instituts für Ornithologie in Seewiesen gemeinsam mit Wissenschaftlern der schwedischen Universität Lund und Ingenieuren der University of Southern California in Los Angeles. Mit im Team war der Neurowissenschaftler Professor Dr. York Winter, der sich seit Jahren mit den besonderen Fähigkeiten der Fledermäuse beschäftigt. Seine Arbeiten an der Universität München und am MPI für Ornithologie wurden finanziert von der VolkswagenStiftung; von 2000 bis 2006 ermöglichte die Stiftung dem Wissenschaftler mit insgesamt rund 1.700.000 Euro die Leitung einer Nachwuchsgruppe.

Glossophaga soricina heißt die kleine Blütenfledermaus, die den Forschern im Fluge neue Erkenntnisse einbrachte. Das in Lateinamerika beheimatete Tier diente Winter und seinen Kollegen als Flugobjekt für eine systematische und quantitative Analyse: Gemessen wurde die geschwindigkeitsabhängige Topologie der Wirbelströmung und die relative Auftriebsfunktion im Flügelauf- und -abschlag. Der Flügelschlag generiert dabei einen „aerodynamischen Fußabdruck“, den die Forscher mit Lasern als Wirbelschleppe hinter dem Tier sichtbar machen konnten. Aus den damit jetzt erstmalig messbaren Impulsänderungen konnten die aerodynamisch wirksamen Kräfte ermittelt werden. Die Auswertung der Bilder der Luftwirbel zeigte, dass jeder Flügelschlag bei der Fledermaus seinen eigenen Wirbel erzeugte. Diese Wirbelerzeugung folgt einer unerwarteten Strömungsdynamik, die sich mit der Messposition auf dem Flügelprofil und geschwindigkeitsabhängig ändert. Die Wissenschaftler gehen davon aus, dass die aerodynamischen Unterschiede zu Vogelflügeln vor allem in der Membranstruktur bei Fledermausflügeln begründet liegen. Denn anders als gefiederte Flügel können die Membranen aerodynamisch nicht so leicht inaktiviert werden. Die neuen Erkenntnisse darüber, wie Fledermäuse die Physik der Schwerkraft austricksen, dürften auch für den Flugzeugbau von Interesse sein.

Die genauen Auswertungen der Flugexperimente und die Methoden finden Sie in der heute erscheinenden Ausgabe von Science, 11. Mai 2007.

Originalveröffentlichung
Hedenström, A., Johansson, L.C., Wolf, M., von Busse, R., Winter, Y., Spedding, G. R.: Bat Flight Generates Complex Aerodynamic Tracks.

Science. 2007 11 May, Vol. 316, Issue 5826.

Weitere Auskünfte und Kontakt
Universität Bielefeld
Fakultät für Biologie
Lehrstuhl für Kognitive Neurowissenschaften
Prof. Dr. York Winter
Telefon: 0521 106 5700
E-Mail: york.winter@uni-bielefeld.de
Kontakt
VolkswagenStiftung
Presse- und Öffentlichkeitsarbeit
Dr. Christian Jung
Telefon: 0511 8381 – 380
E-Mail: jung@volkswagenstiftung.de
Der Text der Presseinformation sowie Bilder stehen im Internet zur Verfügung unter http://www.volkswagenstiftung.de/service/presse.html?datum=20070511.

Media Contact

Dr. Christian Jung idw

Weitere Informationen:

http://www.volkswagenstiftung.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Klimakrise gefährdet alpine Ökosysteme

Gebirge sind vom Klimawandel besonders betroffen: Sie erwärmen sich schneller als das Flachland. Mit der Erwärmung schwindet die Schneedecke und Zwergsträucher dringen in höhere Lagen vor – mit starken Auswirkungen…

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Partner & Förderer