Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Wanderführer für Chromosomen

07.05.2007
Bevor Samen- und Eizelle sich vereinen und damit den Grundstein für neues Leben legen können, müssen sie in einem komplizierten Prozess ihren Chromosomensatz halbieren. Wie die Zellen diesen Akt organisieren, ist auf molekularbiologischer Ebene noch in weiten Teilen unklar.

Würzburger Biologen ist es jetzt allerdings gelungen, ein Protein zu identifizieren, das dabei eine wichtige Rolle spielt. Über ihre Entdeckung berichtet die international anerkannte Fachzeitschrift PNAS in ihrer neuesten Ausgabe.

Wenn Samen- und Eizellen im Laufe der so genannten Reifeteilung ihren Chromosomensatz halbieren, läuft im Inneren des Zellkerns ein exakt choreographierter Tanz ab, in dessen Verlauf sich die Träger des genetischen Materials gegenseitig erkennen, zu Paaren anordnen und auf die verschiedenen Tochterkerne verteilen. Wie sie das schaffen, ist bis heute noch weitgehend ungeklärt. "Man weiß zwar, dass dieser Prozess abläuft, aber nicht, wie er gesteuert wird", sagt Manfred Alsheimer. Alsheimer ist Privatdozent am Lehrstuhl für Zell- und Entwicklungsbiologie der Universität Würzburg und interessiert sich schon lange für die chromosomalen Bewegungsmechanismen während der Reifeteilung.

Ein Detail hat er dabei ganz besonders intensiv untersucht: "Die Chromosomen heften sich zu Beginn der Teilung mit ihren Enden, den so genannten Telomeren, an die Kernhülle an und wandern alle an eine bestimmten Stelle", erklärt der 40-jährige Biologe. Diese Bewegung findet sich in allen Lebewesen, deren Zellen einen Kern besitzen; und sie ist das einzige Beispiel für eine strukturelle Verbindung zwischen Chromosomen und der Kernhülle. Schon seit geraumer Zeit bestand deshalb der Verdacht, dass in dieser Phase eine Verbindung zwischen Kerninnerem und dem umgebenden Zellplasma existiert. "Man geht daher seit langem davon aus, dass die Chromosomen von außen dirigiert werden", sagt Alsheimer.

... mehr zu:
»Alsheimer »Chromosomen »PNAS »Protein »Prozess

Tatsächlich konnten die Forscher vom Biozentrum jetzt gemeinsam mit Kollegen aus Schweden und den USA nachweisen, dass die Telomere an ein ganz bestimmtes Protein andocken, das in der Lage ist, eine strukturelle Verbindung zwischen der Innen- und der Außenseite der Kernmembran zu vermitteln. Damit scheint sich der Verdacht zu bestätigen, dass die Paarung und Trennung der Chromosomen tatsächlich aus dem Cytoplasma heraus, das den Kern umgibt, gesteuert wird.

Das Wissen um das Geschehen im Zellkern ist damit wieder um ein Detail reicher. Zwar steht die Suche nach Erklärungen für die chromosomalen Bewegungen im Großen und Ganzen noch in den Anfängen. Aber: "Unsere Arbeit gibt nun einen ersten Hinweis auf den Mechanismus. Darüber hinaus bieten unsere Ergebnisse eine sehr gute Ausgangsbasis um die komplexen Hintergründe zu entwirren und somit den Prozess der Paarung der Chromosomen besser verstehen zu lernen", sagt Alsheimer. Das sei wohl auch ein Grund, weshalb seine Publikation von Proceedings of the National Academy of Sciences (PNAS) angenommen wurde.

Für die Suche nach der Ursache von Unfruchtbarkeit könnte das Ergebnis ebenfalls von Bedeutung sein. Und für die Behandlung: "Gerade vor einer künstlichen Befruchtung, ist es wichtig, dass man die Chancen diagnostisch abklärt", sagt Alsheimer. Dazu gehöre auch die Frage, ob möglicherweise Störungen auf molekularer Ebene, die auf einen genetischen Defekt zurückgehen, verantwortlich sind für fehlgebildete Spermien. Denn wenn sich die Chromosomen ungleich auf die Tochterzellen verteilen, führt dies fast immer zu Fehlbildungen, wie zum Beispiel beim Down-Syndrom, oder zu gar nicht erst lebensfähigen Embryos.

In Zukunft werden Alsheimer und sein Würzburger Team gemeinsam mit Forschern aus England das neu identifizierte Protein intensiver untersuchen: "Wir wollen die Funktionalität des Proteins definieren", sagt er. Dabei geht es beispielsweise um die Frage, was passiert, wenn das Molekül komplett fehlt. Darüber hinaus werden sie auch einen Blick auf ähnliche Proteine aus der gleichen Familie werfen, von denen eines ganz besonders interessant erscheint. Von dem ist zwar aus der Untersuchung des Genoms bekannt, dass es existieren müsste; in einer Zelle gefunden haben es die Wissenschaftler bis heute jedoch noch nicht. "Es ist wahrscheinlich, dass es sich um ein keimzellspezifisches Protein handelt", sagt Alsheimer. Aber wann und wo es seinen Auftrag erfüllt, ist völlig offen.

Johannes Schmitt, Ricardo Benavente, Didier Hodzic, Christer Höög, Colin L. Stewart, and Manfred Alsheimer: Transmembrane protein Sun2 is involved in tethering mammalian meiotic telomeres to the nuclear envelope. PNAS 2007;104;7426-7431; originally published online Apr 23, 2007. doi:10.1073/pnas.0609198104

Ansprechpartner: PD Dr. Manfred Alsheimer, Tel.: (0931) 888-4282, E-Mail: alsheimer@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de/

Weitere Berichte zu: Alsheimer Chromosomen PNAS Protein Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie