Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie funktioniert der kleinste Motor der Welt?

08.03.2002


Max-Planck-Wissenschaftler entschlüsseln Nanomechanik einer "molekularen Maschine", die ATP, den zentralen Energieträger in unserem Körper, produziert


Das Molekül Adenosintriphosphat (ATP) ist als universeller Träger chemischer Energie in allen Organismen von zentraler Bedeutung. Produziert wird es von einem außerordentlich effizienten Enzym, der F-ATPase. Der menschliche Körper verbraucht pro Tag etwa 50 kg ATP, bei großer körperlicher Anstrengung sogar bis zu einer Tonne. Wissenschaftlern vom Göttinger Max-Planck-Institut für biophysikalische Chemie ist es jetzt gelungen, einzelne Phasen der in diesem Enzym ablaufenden Umwandlung mechanischer in chemische Energie mit Hilfe aufwändiger Computersimulationen bis ins atomare Detail aufzuklären (Nature Structural Biology, März 2002). Zwei Jahre Rechenzeit eines Großcomputers waren erforderlich, damit man jetzt in einem Videofilm den Nanomotor in Aktion sehen kann.

Das Enzym F-ATPase besteht aus zwei Teilen (Abb. 1, links), einem Kopfteil (F1-Teil, grün) und einem Fußteil (F0-Teil, grau). Der "Fuß" ist direkt in der Membran von Mitochondrien verankert, den "Kraftwerken" der Zelle. Die Synthese von ATP wird durch eine faszinierende Nano-Mechanik getrieben. Die zur Synthese erforderliche Energie stammt - wie bei einer elektrischen Batterie - aus einer elektrischen Spannung, verursacht durch eine Differenz in der Konzentration geladener Wasserstoffionen (Protonen, H+) zwischen dem Inneren (oben) und dem Äußeren der Mitochondrien (unten). Dieser Ladungsunterschied wird über den Fußteil ausgeglichen (roter Pfeil), wodurch der zylinderförmige Rotor (dunkelgrau) - ähnlich wie bei einem Elektromotor - in Bewegung gesetzt wird. Da der Kopfteil über einen Stator (gelb) fixiert ist, dreht sich die mit dem Fußteil verbundene asymmetrische Achse (orange) innerhalb des Kopfteils. Das ganze Enzym ist nur etwa 25 Millionstel Millimeter groß - das entspricht etwa dem 2000-ten Teil des Durchmesser eines Haares - und damit der kleinste bekannte Motor der Welt.


Der Kopfteil besteht aus sechs Komponenten (Abb. 1, rechts), von denen drei - die sogenannten β-Untereinheiten (grün) - aktiv an der ATP-Synthese beteiligt sind. Jede β-Untereinheit enthält eine Bindungstasche, in der die eigentliche ATP-Synthese aus Adenosindiphosphat (ADP) und Phosphat stattfindet. Erste Hinweise auf den Funktionsmechanismus des Enzyms ergaben sich aus der 1994 aufgeklärten räumlichen Struktur des Kopfteils (Abb. 1, rechts). Eine der drei Bindungstaschen ist in dieser Struktur nämlich leer, die zweite lediglich mit dem Ausgangsmolekül ADP besetzt und die dritte enthält das eigentliche Reaktionsprodukt, das ATP. Die beiden Moleküle in den Bindungstaschen werden also unterschiedlich stark gehalten - und das, obwohl die drei β-Untereinheiten in ihrem chemischen Aufbau völlig identisch sind. Doch sie unterscheiden sich in ihrer räumlichen Struktur (Abb.2, links): Während die untere Hälfte der leeren β-Untereinheit von der Achse weg nach außen geklappt ist (grau), sind die beiden anderen, beladenen β-Untereinheiten geschlossen (farbig, Pfeil).

Diese Beobachtung ließ vermuten, dass die vom Fußteil bewirkte Drehung der Achse (Pfeil) ein wechselseitiges Öffnen und Schließen der drei β-Untereinheiten erzwingt, in deren Bindungstaschen reihum ein Synthesezyklus stattfindet - vergleichbar den Kolbenbewegungen eines Ottomotors. Die durch die Drehung der Achse übertragene Energie dient dazu, das nach der Synthese in der Bindungstasche fest gebundene ATP-Molekül freizusetzen. Wie die rotierende Achse die Strukturänderungen in den β-Untereinheiten auslöst, war bisher nicht bekannt. Auch wusste man nicht, auf welche Weise Energie mechanisch auf die Bindungstaschen übertragen wird, so dass dort die Bindungsstärke von ATP sinkt. Schließlich war unklar, wie die leere Untereinheit nach der Freisetzung des ATP-Moleküls wieder in ihren geschlossenen Ausgangszustand zurückkehrt.

Rainer Böckmann und Helmut Grubmüller vom Max-Planck-Institut für biophysikalische Chemie gelang es nun, die durch die Drehung der Achse ausgelösten Strukturänderungen innerhalb des Enzyms F1-ATPase mit Hilfe aufwändiger Computersimulationen bis hin zu den aktiven Synthesezentren im atomaren Detail zu verfolgen. Für diese Simulationen haben die Wissenschaftler den F1-Teil des Proteins im Computer Atom für Atom (in Abb. 1, links, als Kugeln dargestellt) nachgebaut und mit einer großen Zahl von Wassermolekülen (blaue Punkte) und gelösten Salzionen (rot, gelb) umgeben, so dass sich das virtuelle Protein quasi in seiner natürlichen Umgebung befand. Insgesamt umfasste das Modell etwa 200.000 Atome, deren Bewegungen in einer anschließenden so genannten Molekulardynamik-Simulation genau berechnet wurden. Für die Simulation brauchte ein aus 120 Prozessoren bestehender Hochleistungsparallelrechner der Gesellschaft für Wissenschaftliche Datenverarbeitung Göttingen (GWDG) annähernd zwei Jahre Rechenzeit. Entstanden ist eine Filmsequenz, in der jedes Detail der Strukturänderung am Bildschirm betrachtet und analysiert werden kann.

Die Simulationen offenbaren eine faszinierende "Nano-Mechanik" innerhalb der β-Untereinheit, an der hauptsächlich die in Abb. 2 (links) rot gefärbten Teile beteiligt sind. Dabei wird die Kippbewegung der unteren Hälfte der Untereinheit - ähnlich wie bei einem mechanischen Hebelwerk - über eine Reihe von Strukturänderungen, die sich Domino-artig fortpflanzen, in eine auf atomarer Ebene präzise koordinierte Verformung der Bindungstasche umgesetzt. Eine wichtige Rolle spielen dabei drei positiv geladene Aminosäuren (Arginine), die in genau definierter Abfolge von den negativ geladenen Phosphatgruppen des ATP-Moleküls (pinkfarben) weggezogen werden (Pfeile), wodurch die wechselseitige elektrostatische Anziehung verringert wird (Abb. 2, rechts). Auf diese Weise lockert sich der "Griff" um das gebundene ATP-Molekül, so dass es die Bindungstasche verlassen kann.

Die Simulationen zeigen ferner, dass sich die leere β-Untereinheit nach Drehen der Achse sehr schnell - wie eine zurückschnellende Feder - schließt. Dieser Befund überraschte die Wissenschaftler, da bisher allgemein angenommen wurde, dass die leere β-Untereinheit erst durch die erneute Bindung eines ADP-Moleküls in den geschlossenen Zustand gezwungen wird. Durch diese neue Einsicht wird die Analogie zum Ottomotor noch deutlicher: Auch dort werden die Kolben nicht erst durch das Einströmen des Benzin-Luft-Gemischs nach oben bewegt, sondern bereits vorher und synchronisiert mit der Bewegung der Kurbelwelle.

Dieses Forschungsergebnis zeigt, wie dank fortschreitender Verbesserung der Simulationsverfahren und rasch wachsender Rechenleistung eine zunehmende Zahl wichtiger biologischer Funktionsprozesse auf atomarer Ebene simuliert werden können. Über die traditionelle Bioinformatik hinausgehend, ermöglichen solche Simulationen, biologische Prozesse auf der Grundlage physikalisch-chemischer Gesetzmäßigkeiten zu erklären.

Originalarbeit:
Rainer A. Böckmann und Helmut Grubmüller: Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase, Nature Structural Biology, März 2002

Weitere Informationen erhalten Sie von:
Dr. Helmut Grubmüller
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Arbeitsgruppe für theoretische molekulare Biophysik
Tel.: 05 51 / 2 01 - 17 63 oder - 13 34
Fax.: 05 51 / 2 01 - 10 89
E-Mail: hgrubmu@gwdg.de

| Max-Planck-Gesellschaft

Weitere Berichte zu: ABB ACHSE ATP ATP-Molekül Bindungstasche Bindungstaschen Enzym Simulation Strukturänderung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise