Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit künstlichen Viren zielstrebig in die Zelle - Möglicher Ansatz für Gentherapie besonders effektiv

26.04.2007
Vielen Leiden wie Krebs oder Erbkrankheiten liegen genetische Defekte zugrunde. Diese so genannten Mutationen verhindern, dass das betroffene Gen seine normale Funktion erfüllt.

In einer Gentherapie sollen entsprechend veränderte Viren gesunde Gene in die Zellen des lebenden Organismus einschleusen, so dass diese die defekten Kopien ersetzen können. Ein Ansatz nutzt "künstliche Viren", also eigens geschaffene molekulare Transporteinheiten. Diese Fähren werden so konstruiert, dass sie möglichst spezifisch nur die erkrankten Zellen erkennen und an diese andocken, um in das Zellinnere aufgenommen zu werden.

Wissenschaftler der Ludwig-Maximilians-Universität (LMU) München erprobten jetzt verschiedene künstliche Viren und verfolgten deren Weg in Tumorzellen mit bislang unerreichter Auflösung, wie in der Fachzeitschrift "Molecular Therapy" berichtet. Die molekularen Transportvehikel erkannten alle den so genannten "Epidermal Growth Factor Receptor", kurz EGFR, der in besonders hoher Dichte an der Oberfläche vieler Krebszellen vorliegt. Wie die mikroskopischen Aufnahmen zeigen, beschleunigte und erleichterte die Wechselwirkung mit diesem Molekül die Aufnahme der künstlichen Viren deutlich - ein wichtiger Schritt auf dem Weg zur Therapie.

Viren können sich nur vermehren, indem sie in andere Zellen eindringen. Sie programmieren ihre Wirtszellen um, so dass diese eine neue Virengeneration produzieren. Die Fähigkeit, mit hoher Effizienz in fremde Zellen einzudringen, macht Viren zu potentiellen Transportvehikeln in der Gentherapie. Weil unerwünschte Nebenwirkungen dabei aber nicht ausgeschlossen werden können, greift die Forschung zunehmend auf "künstliche Viren" zurück. Diese Vehikel können in Zellen eindringen, haben aber im Gegensatz zu ihren natürlichen Vorbildern kein krank machendes Potential. Das Team um Professor Christoph Bräuchle, Department für Chemie und Biochemie der LMU, sowie Professor Ernst Wagner, Department für Pharmazie, analysierte jetzt die Effizienz von drei künstlichen Viren. "In unserem Testsystem nutzten wir drei nicht-virale Vektoren, die aus dem Erbmolekül DNA komplexiert mit der Chemikalie Polyethylenimin, kurz PEI, bestanden - so genannte Polyplexe", berichtet Wagner. Reine PEI-DNA-Polyplexe gelangen dabei mit hoher Effizienz in die Zellen, wenn auch nur sehr unspezifisch. Ihre Oberfläche ist positiv geladen. Bei einer zweiten Variante wurde das PEI teilweise durch ein Fusionsprodukt aus PEI mit der Chemikalie Polyethylenglykol ersetzt, wodurch die Oberfläche des Vehikels eine neutrale Ladung trug. Bei einer dritten Variante schließlich wurde noch ein weiteres Molekül in die Oberfläche eingebracht: der "Epidermal Growth Factor", kurz EGF.

... mehr zu:
»EGF »EGFR »Gentherapie »Polyplexe »Virus »Zelle

Dieses Protein spielt eine wichtige Rolle bei der Regulation des Wachstums der Zelle, ihrer Differenzierung und anderen essentiellen Prozessen. EGF bindet an der Zelloberfläche hoch spezifisch an ein anderes Molekül, seinen Rezeptor. Dieser "Epidermal Growth Factor Receptor", kurz EGFR, aber liegt verstärkt an der Oberfläche von Tumorzellen bei einer ganzen Reihe verschiedener Krebserkrankungen des Menschen vor - und ist damit ein attraktives Zielmolekül für maßgeschneiderte Therapien. Das gilt auch für den Einsatz künstlicher Viren. "Die Hoffnung bei dieser Art von Ansatz ist, dass die Transportvehikel systemisch verabreicht werden können, sich dann aber gezielt im Tumorgewebe - oder einem anderen Zielgewebe - ansammeln und dort aktiv werden", meint Dr. Manfred Ogris, der Korrespondenzautor der Arbeit. Als Modellsystem für ihre Untersuchungen wählten die Wissenschaftler humane Leberkrebszellen. "Ein spezifisches Merkmal dieser Zellen ist die hohe Expression von EGFR an der Zelloberfläche", so Ogris. "Deshalb waren sie besonders geeignet für die Untersuchung mit unseren künstlichen Viren, die EGF enthielten." Denn so bestand die Möglichkeit, dass über die Wechselwirkung zwischen dem Wachstumsfaktor und seinem Rezeptor die molekularen Transportvehikel mit besonders hoher Effizienz in die Zellen geschleust würden.

"In früheren Arbeiten konnte sogar schon gezeigt werden, dass die Aufnahme der künstlichen Viren über EGFR erhöht ist", berichtet Bräuchle. "Unbekannt war aber, worauf dieser Effekt im Detail beruht. In unserer Arbeit haben wir nun unspezifische Polyplexe mit solchen verglichen, die EGF an der Oberfläche enthielten." Dazu wurden einzelne, fluoreszent markierte Polyplexe auf ihrem Weg in die Zelle mittels hoch auflösender Fluoreszenzmikroskopie im Detail verfolgt und in Videosequenzen aufgenommen. "Die Analyse dieser Filme zeigte, dass Polyplexe mit EGF deutlich schneller in die Zelle aufgenommen werden und kürzer an der Zelloberfläche verweilen", so Bräuchle. "Unspezifische Polyplexe dockten auch sehr gut an die Zelloberfläche an, wurden aber deutlich schlechter aufgenommen. Damit ist uns zum ersten Mal gelungen, die Dynamik von zielgerichteten künstlichen Viren bei der Aufnahme und dem Transport in die und in der lebenden Zelle im Detail zu beobachten und aufzunehmen." Dabei wurde auch deutlich, dass der gesamte Vorgang aus drei Phasen besteht, wobei der erste Abschnitt mit der Aufnahme in die Zelle endet, die Partikel sich im zweiten Abschnitt im Zellinneren bewegen und im dritten dann entlang zellulärer Stützstrukturen zum Zielort gebracht werden. "Die Wechselwirkung zwischen EGF und EGFR verkürzt dabei die erste Phase deutlich und beschleunigt vor allem die Aufnahme des Partikels in die Zelle", berichtet Bräuchle. "Die Kenntnis der Details solcher Prozesse ist für eine künftige Gentherapie von großer Wichtigkeit."

Publikation:
"Cellular Dynamics of EGF Receptor Targeted Synthetic Viruses",
Karla de Bruin, Nadia Ruthardt, Katharina von Gersdorff, Ralf Bausinger, Ernst Wagner, Manfred Ogris and Christoph Bräuchle,
Molecular Therapy, advance online publication; 24. April 2007,
doi:10.1038/sj.mt.6300176
Ansprechpartner:
Dr. Manfred Ogris
Department Pharmazie der LMU
Tel.: 089-2180-77842
Fax: 089-2180-77791
E-Mail: manfred.ogris@cup.uni-muenchen.de
und
Prof. Dr. Christoph Bräuchle
Department für Chemie und Biochemie der LMU
Tel.: 089-2180-77549

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: EGF EGFR Gentherapie Polyplexe Virus Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Waffe gegen Diabetes
09.12.2016 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Das Rezept für ein motorisches Neuron
09.12.2016 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher entschlüsseln, wie Pflanzen ihre Blätter abwerfen

09.12.2016 | Biowissenschaften Chemie

"Wächter des Genoms": Forscher aus Halle liefern neue Einblicke in die Struktur des Proteins p53

09.12.2016 | Biowissenschaften Chemie

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie