Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit künstlichen Viren zielstrebig in die Zelle - Möglicher Ansatz für Gentherapie besonders effektiv

26.04.2007
Vielen Leiden wie Krebs oder Erbkrankheiten liegen genetische Defekte zugrunde. Diese so genannten Mutationen verhindern, dass das betroffene Gen seine normale Funktion erfüllt.

In einer Gentherapie sollen entsprechend veränderte Viren gesunde Gene in die Zellen des lebenden Organismus einschleusen, so dass diese die defekten Kopien ersetzen können. Ein Ansatz nutzt "künstliche Viren", also eigens geschaffene molekulare Transporteinheiten. Diese Fähren werden so konstruiert, dass sie möglichst spezifisch nur die erkrankten Zellen erkennen und an diese andocken, um in das Zellinnere aufgenommen zu werden.

Wissenschaftler der Ludwig-Maximilians-Universität (LMU) München erprobten jetzt verschiedene künstliche Viren und verfolgten deren Weg in Tumorzellen mit bislang unerreichter Auflösung, wie in der Fachzeitschrift "Molecular Therapy" berichtet. Die molekularen Transportvehikel erkannten alle den so genannten "Epidermal Growth Factor Receptor", kurz EGFR, der in besonders hoher Dichte an der Oberfläche vieler Krebszellen vorliegt. Wie die mikroskopischen Aufnahmen zeigen, beschleunigte und erleichterte die Wechselwirkung mit diesem Molekül die Aufnahme der künstlichen Viren deutlich - ein wichtiger Schritt auf dem Weg zur Therapie.

Viren können sich nur vermehren, indem sie in andere Zellen eindringen. Sie programmieren ihre Wirtszellen um, so dass diese eine neue Virengeneration produzieren. Die Fähigkeit, mit hoher Effizienz in fremde Zellen einzudringen, macht Viren zu potentiellen Transportvehikeln in der Gentherapie. Weil unerwünschte Nebenwirkungen dabei aber nicht ausgeschlossen werden können, greift die Forschung zunehmend auf "künstliche Viren" zurück. Diese Vehikel können in Zellen eindringen, haben aber im Gegensatz zu ihren natürlichen Vorbildern kein krank machendes Potential. Das Team um Professor Christoph Bräuchle, Department für Chemie und Biochemie der LMU, sowie Professor Ernst Wagner, Department für Pharmazie, analysierte jetzt die Effizienz von drei künstlichen Viren. "In unserem Testsystem nutzten wir drei nicht-virale Vektoren, die aus dem Erbmolekül DNA komplexiert mit der Chemikalie Polyethylenimin, kurz PEI, bestanden - so genannte Polyplexe", berichtet Wagner. Reine PEI-DNA-Polyplexe gelangen dabei mit hoher Effizienz in die Zellen, wenn auch nur sehr unspezifisch. Ihre Oberfläche ist positiv geladen. Bei einer zweiten Variante wurde das PEI teilweise durch ein Fusionsprodukt aus PEI mit der Chemikalie Polyethylenglykol ersetzt, wodurch die Oberfläche des Vehikels eine neutrale Ladung trug. Bei einer dritten Variante schließlich wurde noch ein weiteres Molekül in die Oberfläche eingebracht: der "Epidermal Growth Factor", kurz EGF.

... mehr zu:
»EGF »EGFR »Gentherapie »Polyplexe »Virus »Zelle

Dieses Protein spielt eine wichtige Rolle bei der Regulation des Wachstums der Zelle, ihrer Differenzierung und anderen essentiellen Prozessen. EGF bindet an der Zelloberfläche hoch spezifisch an ein anderes Molekül, seinen Rezeptor. Dieser "Epidermal Growth Factor Receptor", kurz EGFR, aber liegt verstärkt an der Oberfläche von Tumorzellen bei einer ganzen Reihe verschiedener Krebserkrankungen des Menschen vor - und ist damit ein attraktives Zielmolekül für maßgeschneiderte Therapien. Das gilt auch für den Einsatz künstlicher Viren. "Die Hoffnung bei dieser Art von Ansatz ist, dass die Transportvehikel systemisch verabreicht werden können, sich dann aber gezielt im Tumorgewebe - oder einem anderen Zielgewebe - ansammeln und dort aktiv werden", meint Dr. Manfred Ogris, der Korrespondenzautor der Arbeit. Als Modellsystem für ihre Untersuchungen wählten die Wissenschaftler humane Leberkrebszellen. "Ein spezifisches Merkmal dieser Zellen ist die hohe Expression von EGFR an der Zelloberfläche", so Ogris. "Deshalb waren sie besonders geeignet für die Untersuchung mit unseren künstlichen Viren, die EGF enthielten." Denn so bestand die Möglichkeit, dass über die Wechselwirkung zwischen dem Wachstumsfaktor und seinem Rezeptor die molekularen Transportvehikel mit besonders hoher Effizienz in die Zellen geschleust würden.

"In früheren Arbeiten konnte sogar schon gezeigt werden, dass die Aufnahme der künstlichen Viren über EGFR erhöht ist", berichtet Bräuchle. "Unbekannt war aber, worauf dieser Effekt im Detail beruht. In unserer Arbeit haben wir nun unspezifische Polyplexe mit solchen verglichen, die EGF an der Oberfläche enthielten." Dazu wurden einzelne, fluoreszent markierte Polyplexe auf ihrem Weg in die Zelle mittels hoch auflösender Fluoreszenzmikroskopie im Detail verfolgt und in Videosequenzen aufgenommen. "Die Analyse dieser Filme zeigte, dass Polyplexe mit EGF deutlich schneller in die Zelle aufgenommen werden und kürzer an der Zelloberfläche verweilen", so Bräuchle. "Unspezifische Polyplexe dockten auch sehr gut an die Zelloberfläche an, wurden aber deutlich schlechter aufgenommen. Damit ist uns zum ersten Mal gelungen, die Dynamik von zielgerichteten künstlichen Viren bei der Aufnahme und dem Transport in die und in der lebenden Zelle im Detail zu beobachten und aufzunehmen." Dabei wurde auch deutlich, dass der gesamte Vorgang aus drei Phasen besteht, wobei der erste Abschnitt mit der Aufnahme in die Zelle endet, die Partikel sich im zweiten Abschnitt im Zellinneren bewegen und im dritten dann entlang zellulärer Stützstrukturen zum Zielort gebracht werden. "Die Wechselwirkung zwischen EGF und EGFR verkürzt dabei die erste Phase deutlich und beschleunigt vor allem die Aufnahme des Partikels in die Zelle", berichtet Bräuchle. "Die Kenntnis der Details solcher Prozesse ist für eine künftige Gentherapie von großer Wichtigkeit."

Publikation:
"Cellular Dynamics of EGF Receptor Targeted Synthetic Viruses",
Karla de Bruin, Nadia Ruthardt, Katharina von Gersdorff, Ralf Bausinger, Ernst Wagner, Manfred Ogris and Christoph Bräuchle,
Molecular Therapy, advance online publication; 24. April 2007,
doi:10.1038/sj.mt.6300176
Ansprechpartner:
Dr. Manfred Ogris
Department Pharmazie der LMU
Tel.: 089-2180-77842
Fax: 089-2180-77791
E-Mail: manfred.ogris@cup.uni-muenchen.de
und
Prof. Dr. Christoph Bräuchle
Department für Chemie und Biochemie der LMU
Tel.: 089-2180-77549

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: EGF EGFR Gentherapie Polyplexe Virus Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Krebszellen gegen Chemotherapeutika „immun“ machen
24.08.2017 | Universität Witten/Herdecke

nachricht "Comammox"-Bakterien: Langsam, aber super-effizient
24.08.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ein Feuerwerk der chemischen Forschung

24.08.2017 | Veranstaltungen

US-Spitzenforschung aus erster Hand: Karl Deisseroth spricht beim Neurologiekongress in Leipzig

24.08.2017 | Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eisberge: Mathematisches Modell berechnet Abbruch von Schelfeis

24.08.2017 | Geowissenschaften

Besseres Monitoring der Korallenriffe mit dem HyperDiver

24.08.2017 | Geowissenschaften

Rauch von kanadischen Waldbränden bis nach Europa transportiert

24.08.2017 | Geowissenschaften