Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit künstlichen Viren zielstrebig in die Zelle - Möglicher Ansatz für Gentherapie besonders effektiv

26.04.2007
Vielen Leiden wie Krebs oder Erbkrankheiten liegen genetische Defekte zugrunde. Diese so genannten Mutationen verhindern, dass das betroffene Gen seine normale Funktion erfüllt.

In einer Gentherapie sollen entsprechend veränderte Viren gesunde Gene in die Zellen des lebenden Organismus einschleusen, so dass diese die defekten Kopien ersetzen können. Ein Ansatz nutzt "künstliche Viren", also eigens geschaffene molekulare Transporteinheiten. Diese Fähren werden so konstruiert, dass sie möglichst spezifisch nur die erkrankten Zellen erkennen und an diese andocken, um in das Zellinnere aufgenommen zu werden.

Wissenschaftler der Ludwig-Maximilians-Universität (LMU) München erprobten jetzt verschiedene künstliche Viren und verfolgten deren Weg in Tumorzellen mit bislang unerreichter Auflösung, wie in der Fachzeitschrift "Molecular Therapy" berichtet. Die molekularen Transportvehikel erkannten alle den so genannten "Epidermal Growth Factor Receptor", kurz EGFR, der in besonders hoher Dichte an der Oberfläche vieler Krebszellen vorliegt. Wie die mikroskopischen Aufnahmen zeigen, beschleunigte und erleichterte die Wechselwirkung mit diesem Molekül die Aufnahme der künstlichen Viren deutlich - ein wichtiger Schritt auf dem Weg zur Therapie.

Viren können sich nur vermehren, indem sie in andere Zellen eindringen. Sie programmieren ihre Wirtszellen um, so dass diese eine neue Virengeneration produzieren. Die Fähigkeit, mit hoher Effizienz in fremde Zellen einzudringen, macht Viren zu potentiellen Transportvehikeln in der Gentherapie. Weil unerwünschte Nebenwirkungen dabei aber nicht ausgeschlossen werden können, greift die Forschung zunehmend auf "künstliche Viren" zurück. Diese Vehikel können in Zellen eindringen, haben aber im Gegensatz zu ihren natürlichen Vorbildern kein krank machendes Potential. Das Team um Professor Christoph Bräuchle, Department für Chemie und Biochemie der LMU, sowie Professor Ernst Wagner, Department für Pharmazie, analysierte jetzt die Effizienz von drei künstlichen Viren. "In unserem Testsystem nutzten wir drei nicht-virale Vektoren, die aus dem Erbmolekül DNA komplexiert mit der Chemikalie Polyethylenimin, kurz PEI, bestanden - so genannte Polyplexe", berichtet Wagner. Reine PEI-DNA-Polyplexe gelangen dabei mit hoher Effizienz in die Zellen, wenn auch nur sehr unspezifisch. Ihre Oberfläche ist positiv geladen. Bei einer zweiten Variante wurde das PEI teilweise durch ein Fusionsprodukt aus PEI mit der Chemikalie Polyethylenglykol ersetzt, wodurch die Oberfläche des Vehikels eine neutrale Ladung trug. Bei einer dritten Variante schließlich wurde noch ein weiteres Molekül in die Oberfläche eingebracht: der "Epidermal Growth Factor", kurz EGF.

... mehr zu:
»EGF »EGFR »Gentherapie »Polyplexe »Virus »Zelle

Dieses Protein spielt eine wichtige Rolle bei der Regulation des Wachstums der Zelle, ihrer Differenzierung und anderen essentiellen Prozessen. EGF bindet an der Zelloberfläche hoch spezifisch an ein anderes Molekül, seinen Rezeptor. Dieser "Epidermal Growth Factor Receptor", kurz EGFR, aber liegt verstärkt an der Oberfläche von Tumorzellen bei einer ganzen Reihe verschiedener Krebserkrankungen des Menschen vor - und ist damit ein attraktives Zielmolekül für maßgeschneiderte Therapien. Das gilt auch für den Einsatz künstlicher Viren. "Die Hoffnung bei dieser Art von Ansatz ist, dass die Transportvehikel systemisch verabreicht werden können, sich dann aber gezielt im Tumorgewebe - oder einem anderen Zielgewebe - ansammeln und dort aktiv werden", meint Dr. Manfred Ogris, der Korrespondenzautor der Arbeit. Als Modellsystem für ihre Untersuchungen wählten die Wissenschaftler humane Leberkrebszellen. "Ein spezifisches Merkmal dieser Zellen ist die hohe Expression von EGFR an der Zelloberfläche", so Ogris. "Deshalb waren sie besonders geeignet für die Untersuchung mit unseren künstlichen Viren, die EGF enthielten." Denn so bestand die Möglichkeit, dass über die Wechselwirkung zwischen dem Wachstumsfaktor und seinem Rezeptor die molekularen Transportvehikel mit besonders hoher Effizienz in die Zellen geschleust würden.

"In früheren Arbeiten konnte sogar schon gezeigt werden, dass die Aufnahme der künstlichen Viren über EGFR erhöht ist", berichtet Bräuchle. "Unbekannt war aber, worauf dieser Effekt im Detail beruht. In unserer Arbeit haben wir nun unspezifische Polyplexe mit solchen verglichen, die EGF an der Oberfläche enthielten." Dazu wurden einzelne, fluoreszent markierte Polyplexe auf ihrem Weg in die Zelle mittels hoch auflösender Fluoreszenzmikroskopie im Detail verfolgt und in Videosequenzen aufgenommen. "Die Analyse dieser Filme zeigte, dass Polyplexe mit EGF deutlich schneller in die Zelle aufgenommen werden und kürzer an der Zelloberfläche verweilen", so Bräuchle. "Unspezifische Polyplexe dockten auch sehr gut an die Zelloberfläche an, wurden aber deutlich schlechter aufgenommen. Damit ist uns zum ersten Mal gelungen, die Dynamik von zielgerichteten künstlichen Viren bei der Aufnahme und dem Transport in die und in der lebenden Zelle im Detail zu beobachten und aufzunehmen." Dabei wurde auch deutlich, dass der gesamte Vorgang aus drei Phasen besteht, wobei der erste Abschnitt mit der Aufnahme in die Zelle endet, die Partikel sich im zweiten Abschnitt im Zellinneren bewegen und im dritten dann entlang zellulärer Stützstrukturen zum Zielort gebracht werden. "Die Wechselwirkung zwischen EGF und EGFR verkürzt dabei die erste Phase deutlich und beschleunigt vor allem die Aufnahme des Partikels in die Zelle", berichtet Bräuchle. "Die Kenntnis der Details solcher Prozesse ist für eine künftige Gentherapie von großer Wichtigkeit."

Publikation:
"Cellular Dynamics of EGF Receptor Targeted Synthetic Viruses",
Karla de Bruin, Nadia Ruthardt, Katharina von Gersdorff, Ralf Bausinger, Ernst Wagner, Manfred Ogris and Christoph Bräuchle,
Molecular Therapy, advance online publication; 24. April 2007,
doi:10.1038/sj.mt.6300176
Ansprechpartner:
Dr. Manfred Ogris
Department Pharmazie der LMU
Tel.: 089-2180-77842
Fax: 089-2180-77791
E-Mail: manfred.ogris@cup.uni-muenchen.de
und
Prof. Dr. Christoph Bräuchle
Department für Chemie und Biochemie der LMU
Tel.: 089-2180-77549

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: EGF EGFR Gentherapie Polyplexe Virus Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Rezeptoren auf der Arbeit
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rasche Umweltveränderungen begünstigen Artensterben
19.10.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was winzige Strukturen über Materialeigenschaften verraten

19.10.2017 | Materialwissenschaften

Rasche Umweltveränderungen begünstigen Artensterben

19.10.2017 | Biowissenschaften Chemie

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungsnachrichten