Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lernen im Computermodell

25.04.2007
Wissenschaftler erforschen Lernvorgänge durch die Computersimulation eines Kubikmillimeters Gehirn

Dass das Gehirn lernen kann, liegt an den besonderen Eigenschaften der Nervenzellen, insbesondere deren Verbindungen, der Synapsen. Bei jeder Aktivität des Gehirns werden Informationen in Form von kurzen, elektrischen Impulsen von Zelle zu Zelle weitergegeben - man sagt, die Nervenzellen "feuern".

Dabei kann die Weitergabe von Signalen regelrecht geübt werden. Wenn eine Zelle A einen Impuls aussendet, der in Zelle B eine Antwort auslöst, wird der Kontakt von der Zelle A zur Zelle B verstärkt. Besteht kein derartiger Kausalzusammenhang oder feuert wiederholt B kurz vor A, wird der Kontakt geschwächt. Durch diese so genannte "spike-timing dependent plasticity" (STDP) werden Nervenbahnen durch häufige Wiederholungen ausgebaut. Andere Verknüpfungen hingegen, die selten gebraucht werden, verfallen.

Diese "Plastizität" des Gehirns, die Fähigkeit zur physiologischen und strukturellen Veränderung, gilt als Grundlage des Lernens. In einer aufwändigen Computersimulation von 100.000 Neuronen mit jeweils 10.000 Kontakten - das entspricht etwas einem Kubikmillimeter Großhirnrinde - haben Abigail Morrison, Ad Aertsen und Markus Diesmann nun Hinweise darauf gefunden, dass STDP alleine noch nicht ausreicht, um Lernvorgänge in Zellen zu erklären. Die Arbeit der Wissenschaftler vom Bernstein Center for Computational Neuroscience, der Universität Freiburg und vom RIKEN Brain Science Institute in Tokyo wird in der Juni-Ausgabe der Zeitschrift Neural Computation publiziert.

Schon in früheren Experimenten konnten die Wissenschaftler zeigen, dass ihre Computersimulation viele Eigenschaften des Gehirns recht gut widerspiegelt. Die virtuellen Neurone feuern mit etwa gleicher Frequenz wie im Gehirn, die Aktivität schaukelt sich weder hoch, noch ebbt sie ab - das System befindet sich in einem "dynamischen Gleichgewicht". Neu in ihrem Modell ist allerdings, dass die virtuellen neuronalen Verbindungen nun auch die Eigenschaft der Plastizität besitzen. Dazu entwickelte Morrison zunächst eine neue mathematische Formulierung der STDP-Lernregel, welche die in der Literatur publizierten experimentellen Ergebnisse deutlich besser beschreibt. Damit kommt das Modell der Realität noch ein Stück näher.

Um zu untersuchen, ob das Computermodell auch Lernvorgänge simulieren kann, regten die Wissenschaftler wiederholt eine bestimmte Gruppe von Neuronen an. Dabei beobachteten sie, dass zunächst genau das passierte, was ein Lernmodell voraussagen würde: Da die stimulierten Neurone die fortwährenden Impulse an die ihnen nachgeschalteten Neurone weitergaben, wurden diese Kontakte verstärkt. Dies ging aber auf Kosten der Kontakte von anderen vorgeschalteten Zellen im Netzwerk. Die Zellen hörten vornehmlich auf die von außen eingegebenen Signale, dadurch wurden die anderen Kontakte überflüssig und entsprechend abgebaut. Wie die Wissenschaftler feststellten, koppelte sich die ganze Gruppe von Nervenzellen, die auf die Stimulation reagierten, nach einiger Zeit vom Netzwerk ab.

STDP alleine kann also Lernen in einem größeren neuronalen Netzwerk nicht erklären, es müssen weitere Bedingungen erfüllt sein, damit das System tatsächlich lernen kann. Es gibt schon einige Hinweise darauf, was für Bedingungen das sein könnten. Mit der Simulation von großen Netzwerken haben Morrison und ihre Kollegen ein gutes Werkzeug in der Hand, um die verschiedenen Modelle zu überprüfen und sich dem Geheimnis des neuronalen Lernens weiter zu nähern.

Quelle:
Morrison, A., Aertsen, A., & Diesmann, M. (2007). Spike-timing dependent plasticity in balanced random networks. Neural Computation, 19 (6) 1437-1467

http://www.mitpressjournals.org/doi/abs/10.1162/neco.2007.19.6.1437

Kontakt:
Dr. Abigail Morrison
Diesmann Research Unit
Computational Neuroscience Group
RIKEN Brain Science Institute
2-1 Hirosawa
Wako City, Saitama 351-0198
Japan
tel: +81 48 467 9644
abigail@brain.riken.jp
Prof. Dr. Ad Aertsen
Bernstein Center für Computational Neuroscience
Albert-Ludwigs-Universität
Hansastrasse 9a
79104 Freiburg i.Br.
Tel: +49 (761) 203-9549
ad.aertsen@biologie.uni-freiburg.de

Katrin Weigmann | idw
Weitere Informationen:
http://www.bccn-freiburg.de/
http://www.mitpressjournals.org/doi/abs/10.1162/neco.2007.19.6.1437

Weitere Berichte zu: Computersimulation Impuls Nervenzelle Neuron Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält
22.05.2017 | Ruhr-Universität Bochum

nachricht Myrte schaltet „Anstandsdame“ in Krebszellen aus
22.05.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie