Was lässt die Pflanzen blühen

Das FT-Protein wurde mit einem grün fluoreszierenden Protein (GFP) markiert und im Gefäßsystem eines jungen Arabidopsis-Keimlings unter dem Mikroskop beobachtet. So konnte experimentell nachgewiesen werden, dass das FT-Protein aus den Blättern bis in die Sprossspitzen der Ackerschmalwand wandert. Bild: Max-Planck-Institut für Züchtungsforschung

Der Winter ist vorbei, die Tage werden länger und die ersten Pflanzen blühen. Doch woher wissen sie, dass gerade jetzt der richtige Zeitpunkt gekommen ist, eine Blüte zu bilden? Wissenschaftler vom Max-Planck-Institut für Züchtungsforscher haben zusammen mit Forschern des Imperial College London das Geheimnis der Blüteninduktion bei der Modellpflanze Arabidopsis (Ackerschmalwand) gelüftet. In der aktuellen Ausgabe der Fachzeitschrift „Science“ beschreiben die Forscher um George Coupland, dass ein in den Blättern gebildetes Protein – das FLOWERING LOCUS T-Protein, kurz FT-Protein – bis in die Triebspitzen wandert und dort die Blütenbildung auslöst (Science, Online -Ausgabe vom 20. April 2007).

Pflanzen können zwischen Sommer und Winter unterscheiden. Sie besitzen molekulare Lichtsensoren in ihren Blättern, die jahreszeitliche Unterschiede der Tageslänge messen können. Zum richtigen Zeitpunkt, meist im Frühling, wenn die Tage wieder länger werden, wird von den Blättern ein Botenstoff als Signal ausgesendet und die Blütenbildung induziert. Die Existenz dieses Botenstoffs wurde bereits im Jahre 1930 postuliert. Die hypothetische Substanz wurde „Florigen“ genannt. Ein potenzieller Kandidat für das Florigen war das Protein FT, das FLOWERING LOCUS T-Protein.

Die Wissenschaftler aus der Arbeitsgruppe von George Coupland vom Max-Planck-Institut für Züchtungsforschung hefteten ein grün fluoreszierendes Protein, das GFP, an das FT-Protein. Auf diese Weise konnten Sie den Weg des GFP-FT-Komplexes in der Modellpflanze Arabidopsis vom Blatt bis zur Pflanzenspitze unter dem Mikroskop verfolgen und den Nachweis liefern, dass das Signal zur Blüteninduktion – das FT-Protein – tatsächlich in den Blättern gebildet wird und danach durch die gesamte Pflanze bis in den Wuchskegel der Sprossspitzen wandert, wo die Blütenbildung induziert wird. Damit widerlegten sie eine im Jahr 2005 in Science publizierte Arbeit, nach der die Boten-RNA (mRNA), die die Bauanleitung für das FT-Protein enthält, vom Blatt bis in den Wuchskegel transportiert werden sollte, und erst dort sollte dann das FT-Protein gebildet werden (Huang et. al. 2005). Mittlerweile wurde diese Arbeit in der aktuellen Ausgabe von „Science“ widerrufen.

Einen weiteren Beweis dafür, dass das FT-Protein die Blütenbildung auslöst und nicht die dazugehörige mRNA, lieferte der Versuch, bei dem Mutanten, die kein FT-Protein bilden konnten, da ihnen das entsprechende Gen fehlte, auf ganz normale Arabidopsis-Pflanzen gepfropft wurden. Bei diesem Experiment beobachteten die Forscher, wie das FT-Protein aus der unteren Pflanze durch die aufgepfropfte, FT-freie Pflanze durchwanderte und schließlich Blüten gebildet wurden. „Damit haben wir sehr anschaulich zeigen können, dass das eigentliche Signal für die Blüteninduktion tatsächlich das FT-Protein selbst ist. Ob es jedoch das alleinige Signal ist, können wir noch nicht sagen“, erklärt George Coupland. „Ein weiterer Beweis für die Richtigkeit unserer Arbeit sind die Ergebnisse japanischer Reisforscher, die mit ihrem Pfropfexperiment bei Reispflanzen zu dem gleichen Ergebnis wie wir kommen.“ Und der Direktor am Max-Planck-Institut fügt hinzu: „Sicherlich werden unsere Ergebnisse auch als eine Art Funktionsmuster für andere Transportwege über längere Distanzen dienen können.“

Die aktuellen Entdeckungen der Kölner Forscher bauen auf Arbeiten auf, in denen die Coupland-Gruppe herausfand, dass das FT-Gen nur im Frühling und im Sommer aktiviert wird (Valverde et. al., Science, 2004), sowie auf den Ergebnissen ihrer Kollegen vom Max-Planck-Institut für Entwicklungsbiologie und vom John Innes Centre, die in einer gemeinsamen Studie zeigen konnten, wie das FT-Protein jene Gene beeinflusst, die Blüten induzieren. Die Forscher stellten fest, dass FT an ein weiteres Protein – FD – bindet, das seinerseits die Aktivität von Genen steuert, die dazu führen, dass sich Gruppen von unspezialisierten Stammzellen an den Sprossspitzen zu Blüten entwickeln (Weigel et al., Science, 2005).

Originalveröffentlichung:

Laurent Corbesier, Coral Vincent, Seonghoe Jang, Fabio Fornara, Qinzhi Fan, Iain Searle, Antonis Giakountis, Sara Farrona, Lionel Gissot, Colin Turnbull and George Coupland; FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis; Science, Online-Veröffentlichung, 20. April 2007

Media Contact

Dr. Bernd Wirsing Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer