Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was lässt die Pflanzen blühen

20.04.2007
Kölner Max-Planck-Forscher können erstmals die genaue Rolle des FT-Proteins bei der Blühinduktion in der Pflanze aufklären

Der Winter ist vorbei, die Tage werden länger und die ersten Pflanzen blühen. Doch woher wissen sie, dass gerade jetzt der richtige Zeitpunkt gekommen ist, eine Blüte zu bilden? Wissenschaftler vom Max-Planck-Institut für Züchtungsforscher haben zusammen mit Forschern des Imperial College London das Geheimnis der Blüteninduktion bei der Modellpflanze Arabidopsis (Ackerschmalwand) gelüftet. In der aktuellen Ausgabe der Fachzeitschrift "Science" beschreiben die Forscher um George Coupland, dass ein in den Blättern gebildetes Protein - das FLOWERING LOCUS T-Protein, kurz FT-Protein - bis in die Triebspitzen wandert und dort die Blütenbildung auslöst (Science, Online -Ausgabe vom 20. April 2007).


Das FT-Protein wurde mit einem grün fluoreszierenden Protein (GFP) markiert und im Gefäßsystem eines jungen Arabidopsis-Keimlings unter dem Mikroskop beobachtet. So konnte experimentell nachgewiesen werden, dass das FT-Protein aus den Blättern bis in die Sprossspitzen der Ackerschmalwand wandert. Bild: Max-Planck-Institut für Züchtungsforschung

Pflanzen können zwischen Sommer und Winter unterscheiden. Sie besitzen molekulare Lichtsensoren in ihren Blättern, die jahreszeitliche Unterschiede der Tageslänge messen können. Zum richtigen Zeitpunkt, meist im Frühling, wenn die Tage wieder länger werden, wird von den Blättern ein Botenstoff als Signal ausgesendet und die Blütenbildung induziert. Die Existenz dieses Botenstoffs wurde bereits im Jahre 1930 postuliert. Die hypothetische Substanz wurde "Florigen" genannt. Ein potenzieller Kandidat für das Florigen war das Protein FT, das FLOWERING LOCUS T-Protein.

Die Wissenschaftler aus der Arbeitsgruppe von George Coupland vom Max-Planck-Institut für Züchtungsforschung hefteten ein grün fluoreszierendes Protein, das GFP, an das FT-Protein. Auf diese Weise konnten Sie den Weg des GFP-FT-Komplexes in der Modellpflanze Arabidopsis vom Blatt bis zur Pflanzenspitze unter dem Mikroskop verfolgen und den Nachweis liefern, dass das Signal zur Blüteninduktion - das FT-Protein - tatsächlich in den Blättern gebildet wird und danach durch die gesamte Pflanze bis in den Wuchskegel der Sprossspitzen wandert, wo die Blütenbildung induziert wird. Damit widerlegten sie eine im Jahr 2005 in Science publizierte Arbeit, nach der die Boten-RNA (mRNA), die die Bauanleitung für das FT-Protein enthält, vom Blatt bis in den Wuchskegel transportiert werden sollte, und erst dort sollte dann das FT-Protein gebildet werden (Huang et. al. 2005). Mittlerweile wurde diese Arbeit in der aktuellen Ausgabe von "Science" widerrufen.

Einen weiteren Beweis dafür, dass das FT-Protein die Blütenbildung auslöst und nicht die dazugehörige mRNA, lieferte der Versuch, bei dem Mutanten, die kein FT-Protein bilden konnten, da ihnen das entsprechende Gen fehlte, auf ganz normale Arabidopsis-Pflanzen gepfropft wurden. Bei diesem Experiment beobachteten die Forscher, wie das FT-Protein aus der unteren Pflanze durch die aufgepfropfte, FT-freie Pflanze durchwanderte und schließlich Blüten gebildet wurden. "Damit haben wir sehr anschaulich zeigen können, dass das eigentliche Signal für die Blüteninduktion tatsächlich das FT-Protein selbst ist. Ob es jedoch das alleinige Signal ist, können wir noch nicht sagen", erklärt George Coupland. "Ein weiterer Beweis für die Richtigkeit unserer Arbeit sind die Ergebnisse japanischer Reisforscher, die mit ihrem Pfropfexperiment bei Reispflanzen zu dem gleichen Ergebnis wie wir kommen." Und der Direktor am Max-Planck-Institut fügt hinzu: "Sicherlich werden unsere Ergebnisse auch als eine Art Funktionsmuster für andere Transportwege über längere Distanzen dienen können."

Die aktuellen Entdeckungen der Kölner Forscher bauen auf Arbeiten auf, in denen die Coupland-Gruppe herausfand, dass das FT-Gen nur im Frühling und im Sommer aktiviert wird (Valverde et. al., Science, 2004), sowie auf den Ergebnissen ihrer Kollegen vom Max-Planck-Institut für Entwicklungsbiologie und vom John Innes Centre, die in einer gemeinsamen Studie zeigen konnten, wie das FT-Protein jene Gene beeinflusst, die Blüten induzieren. Die Forscher stellten fest, dass FT an ein weiteres Protein - FD - bindet, das seinerseits die Aktivität von Genen steuert, die dazu führen, dass sich Gruppen von unspezialisierten Stammzellen an den Sprossspitzen zu Blüten entwickeln (Weigel et al., Science, 2005).

Originalveröffentlichung:

Laurent Corbesier, Coral Vincent, Seonghoe Jang, Fabio Fornara, Qinzhi Fan, Iain Searle, Antonis Giakountis, Sara Farrona, Lionel Gissot, Colin Turnbull and George Coupland; FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis; Science, Online-Veröffentlichung, 20. April 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Blätter Blütenbildung FT-Protein Max-Planck-Institut Pflanze Protein Science

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufschlussreiche Partikeltrennungen
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Bildgebung von entstehendem Narbengewebe
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie