Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was lässt die Pflanzen blühen

20.04.2007
Kölner Max-Planck-Forscher können erstmals die genaue Rolle des FT-Proteins bei der Blühinduktion in der Pflanze aufklären

Der Winter ist vorbei, die Tage werden länger und die ersten Pflanzen blühen. Doch woher wissen sie, dass gerade jetzt der richtige Zeitpunkt gekommen ist, eine Blüte zu bilden? Wissenschaftler vom Max-Planck-Institut für Züchtungsforscher haben zusammen mit Forschern des Imperial College London das Geheimnis der Blüteninduktion bei der Modellpflanze Arabidopsis (Ackerschmalwand) gelüftet. In der aktuellen Ausgabe der Fachzeitschrift "Science" beschreiben die Forscher um George Coupland, dass ein in den Blättern gebildetes Protein - das FLOWERING LOCUS T-Protein, kurz FT-Protein - bis in die Triebspitzen wandert und dort die Blütenbildung auslöst (Science, Online -Ausgabe vom 20. April 2007).


Das FT-Protein wurde mit einem grün fluoreszierenden Protein (GFP) markiert und im Gefäßsystem eines jungen Arabidopsis-Keimlings unter dem Mikroskop beobachtet. So konnte experimentell nachgewiesen werden, dass das FT-Protein aus den Blättern bis in die Sprossspitzen der Ackerschmalwand wandert. Bild: Max-Planck-Institut für Züchtungsforschung

Pflanzen können zwischen Sommer und Winter unterscheiden. Sie besitzen molekulare Lichtsensoren in ihren Blättern, die jahreszeitliche Unterschiede der Tageslänge messen können. Zum richtigen Zeitpunkt, meist im Frühling, wenn die Tage wieder länger werden, wird von den Blättern ein Botenstoff als Signal ausgesendet und die Blütenbildung induziert. Die Existenz dieses Botenstoffs wurde bereits im Jahre 1930 postuliert. Die hypothetische Substanz wurde "Florigen" genannt. Ein potenzieller Kandidat für das Florigen war das Protein FT, das FLOWERING LOCUS T-Protein.

Die Wissenschaftler aus der Arbeitsgruppe von George Coupland vom Max-Planck-Institut für Züchtungsforschung hefteten ein grün fluoreszierendes Protein, das GFP, an das FT-Protein. Auf diese Weise konnten Sie den Weg des GFP-FT-Komplexes in der Modellpflanze Arabidopsis vom Blatt bis zur Pflanzenspitze unter dem Mikroskop verfolgen und den Nachweis liefern, dass das Signal zur Blüteninduktion - das FT-Protein - tatsächlich in den Blättern gebildet wird und danach durch die gesamte Pflanze bis in den Wuchskegel der Sprossspitzen wandert, wo die Blütenbildung induziert wird. Damit widerlegten sie eine im Jahr 2005 in Science publizierte Arbeit, nach der die Boten-RNA (mRNA), die die Bauanleitung für das FT-Protein enthält, vom Blatt bis in den Wuchskegel transportiert werden sollte, und erst dort sollte dann das FT-Protein gebildet werden (Huang et. al. 2005). Mittlerweile wurde diese Arbeit in der aktuellen Ausgabe von "Science" widerrufen.

Einen weiteren Beweis dafür, dass das FT-Protein die Blütenbildung auslöst und nicht die dazugehörige mRNA, lieferte der Versuch, bei dem Mutanten, die kein FT-Protein bilden konnten, da ihnen das entsprechende Gen fehlte, auf ganz normale Arabidopsis-Pflanzen gepfropft wurden. Bei diesem Experiment beobachteten die Forscher, wie das FT-Protein aus der unteren Pflanze durch die aufgepfropfte, FT-freie Pflanze durchwanderte und schließlich Blüten gebildet wurden. "Damit haben wir sehr anschaulich zeigen können, dass das eigentliche Signal für die Blüteninduktion tatsächlich das FT-Protein selbst ist. Ob es jedoch das alleinige Signal ist, können wir noch nicht sagen", erklärt George Coupland. "Ein weiterer Beweis für die Richtigkeit unserer Arbeit sind die Ergebnisse japanischer Reisforscher, die mit ihrem Pfropfexperiment bei Reispflanzen zu dem gleichen Ergebnis wie wir kommen." Und der Direktor am Max-Planck-Institut fügt hinzu: "Sicherlich werden unsere Ergebnisse auch als eine Art Funktionsmuster für andere Transportwege über längere Distanzen dienen können."

Die aktuellen Entdeckungen der Kölner Forscher bauen auf Arbeiten auf, in denen die Coupland-Gruppe herausfand, dass das FT-Gen nur im Frühling und im Sommer aktiviert wird (Valverde et. al., Science, 2004), sowie auf den Ergebnissen ihrer Kollegen vom Max-Planck-Institut für Entwicklungsbiologie und vom John Innes Centre, die in einer gemeinsamen Studie zeigen konnten, wie das FT-Protein jene Gene beeinflusst, die Blüten induzieren. Die Forscher stellten fest, dass FT an ein weiteres Protein - FD - bindet, das seinerseits die Aktivität von Genen steuert, die dazu führen, dass sich Gruppen von unspezialisierten Stammzellen an den Sprossspitzen zu Blüten entwickeln (Weigel et al., Science, 2005).

Originalveröffentlichung:

Laurent Corbesier, Coral Vincent, Seonghoe Jang, Fabio Fornara, Qinzhi Fan, Iain Searle, Antonis Giakountis, Sara Farrona, Lionel Gissot, Colin Turnbull and George Coupland; FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis; Science, Online-Veröffentlichung, 20. April 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Blätter Blütenbildung FT-Protein Max-Planck-Institut Pflanze Protein Science

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CHP1-Mutation verursacht zerebelläre Ataxie
23.01.2018 | Uniklinik Köln

nachricht Lebensrettende Mikrobläschen
23.01.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics