Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wundheilung - MDC-Forscher identifizieren Schlüsselfunktion eines Moleküls

19.04.2007
Die Haut ist das größte Organ des Menschen. Sie schützt ihn vor Umwelteinflüssen und Krankheitserregern, sie regelt den Wärmehaushalt und schützt ihn vor Austrocknung.

Sie erneuert sich beim Menschen rundherum etwa einmal im Monat, indem sie ständig die abgestorbenen Zellen auf der Hautoberfläche abstößt und durch neue, aus der untersten Schicht der Oberhaut nach oben gewanderte Zellen ersetzt. Bei Hautverletzungen ist dieser Prozess beschleunigt, damit sich die Wunden rasch schließen und keine Krankheitskeime ins Körperinnere dringen. Forscher des Max-Delbrück-Centrums für Moleklulare Medizin (MDC) Berlin-Buch haben jetzt zeigen können, dass das Signalmolekül c-Met, das in der Embryonalentwicklung Zellwachstum und Zellwanderung steuert, auch eine Schlüsselrolle bei der Wundheilung der Haut spielt.

Fehlt c-Met in Hautzellen, kann sich kein neues Gewebe bilden und die Wunde verschließen. Die Arbeit von Jolanta Chmielowiec, Doktorandin von Prof. Walter Birchmeier, und Prof. Carmen Birchmeier ist jetzt im Journal of Cell Biology (Vol. 177, Nr. 1, pp. 151 - 162, 2007)* erschienen.

Bei einer Verletzung der Haut bildet sich zunächst quasi als Erste-Hilfe-Maßnahme Wundschorf, der die Wunde nach außen abdichtet, damit keine Keime ins Innere gelangen. Vom Wundrand her wandern anschließend Hornzellen (Keratinozyten) über die Wunde. Sie teilen sich besonders schnell und bilden rasch neues Hautgewebe, das innerhalb kurzer Zeit die Wunde abdeckt. Dieses sehr stark wachsende Gewebe, das hyperaktive Epithel, füllt die Wunde auch mit neuen Hautzellen auf, so dass sich schließlich neues Gewebe bildet, das den Wundschorf ersetzt.

Diesen Wanderungsprozeß vom Wundrand her, steuert das Signalmolekül c-Met. Es ist ein Rezeptormolekül, das auch auf der Hülle von Hautzellen sitzt, und dessen Rolle in der Entwicklungsbiologie das Labor von Prof. Carmen Birchmeier in den vergangenen Jahren intensiv erforscht hat. Mitspieler von c-Met ist ein Wachstumsfaktor, Hepatocyte Growth Factor/Scatter Factor (HGF/SF) genannt, weil er bei der Leber, einem Organ, das sich nach Verletzungen besonders rasch regeneriert, als Wachstumsfaktor für Leberzellen (Hepatozyten) entdeckt worden ist. Dieser Faktor spielt auch in der Krebsforschung als "Streufaktor" (Scatter Factor) eine grosse Rolle, wie Prof. Walter Birchmeier und seine Mitarbeiter mehrfach zeigen konnten.

Das Duo HGF/SF und c-Met regelt ganz entscheidend die Zellwanderung und wird nicht nur in der Leber, sondern auch in der Lunge, den Nieren und dem Herzen verstärkt ausgeschüttet, wenn diese Organe verletzt sind. Das ist auch bei Hautwunden der Fall, wie die MDC-Forscher jetzt zeigen konnten. HGF/SF und c-Met werden dabei verstärkt von dem hyperaktiven Hautgewebe ausgeschüttet. Dieses Gewebe puscht also selbst sein Wachstum. Während c-Met aber normalerweise sowohl in der Haut als auch in den Haarfollikeln vorkommt und bei Wunden verstärkt im hyperaktiven Epithel ausgeschüttet wird, ist HGF/SF vor einer Verletzung in den Haarfollikeln nachweisbar, nicht aber in der Haut. Erst nach einer Verletzung ist HGF/SF in der Haut aktiv, und dann vor allem an den Wundrändern des hyperaktiven Epithels.

Die MDC-Forscher hatten mit einer bestimmten Technik das Gen für c-Met in Mäusen gezielt ausgeschaltet. Sie stellten dabei fest, dass Mäuse, deren Hautzellen kein c-Met mehr bilden, bei Hautverletzungen keine neue Haut aufbauen. Bei den Mäusen, die noch über einige Hautzellen mit aktiven c-Met verfügen, weil diese Zellen der genetischen Veränderung entkommen sind, ist die Wundheilung nicht blockiert. Sie tritt aber verspätet ein und dauert doppelt solange wie im Normalfall. Das heisst, nur die Hautzellen mit aktivem c-Met können das rasch wachsende und damit rasch schützende neue Gewebe zum Verschluß einer Hautwunde aufbauen.

*c-Met is essential for wound healing in the skin

Jolanta Chmielowiec1, Malgorzata Borowiak2, Markus Morkel1, 6, Theresia Stradal3, Barbara Munz4, Sabine Werner5, Jürgen Wehland3, Carmen Birchmeier2, Walter Birchmeier1*

1Department of Cancer Biology, Max-Delbrück-Center for Molecular Medicine, Robert Rössle Strasse 10, 13125 Berlin, Germany

2Department of Neuroscience, Max-Delbrück-Center for Molecular Medicine, Robert Rössle Strasse 10, 13125 Berlin, Germany

3Department of Cell Biology, Helmholtz Centre for Infection Research, Mascheroder Weg1, D-38124 Braunschweig, Germany

4Institute of Physiology, Charité Medical University Berlin, Arnimallee 22, 14195 Berlin, Germany

5Institute of Cell Biolog, ETH Zürich, Hönggerberg, CH-8093 Zürich, Switzerland

6Present address: Max-Planck-Institute for Molecular Genetics, Ihnestraße 73, 14195 Berlin, Germany

*Corresponding author: Walter Birchmeier
Phone: +49-30-94063810, Fax: +49-30-94062656; E-mail: wbirch@mdc-berlin.de
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de/ueber_das_mdc/presse/index.htm

Weitere Berichte zu: Gewebe HGF/SF Hautzelle MDC-Forscher Wunde Wundheilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie