Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wundheilung - MDC-Forscher identifizieren Schlüsselfunktion eines Moleküls

19.04.2007
Die Haut ist das größte Organ des Menschen. Sie schützt ihn vor Umwelteinflüssen und Krankheitserregern, sie regelt den Wärmehaushalt und schützt ihn vor Austrocknung.

Sie erneuert sich beim Menschen rundherum etwa einmal im Monat, indem sie ständig die abgestorbenen Zellen auf der Hautoberfläche abstößt und durch neue, aus der untersten Schicht der Oberhaut nach oben gewanderte Zellen ersetzt. Bei Hautverletzungen ist dieser Prozess beschleunigt, damit sich die Wunden rasch schließen und keine Krankheitskeime ins Körperinnere dringen. Forscher des Max-Delbrück-Centrums für Moleklulare Medizin (MDC) Berlin-Buch haben jetzt zeigen können, dass das Signalmolekül c-Met, das in der Embryonalentwicklung Zellwachstum und Zellwanderung steuert, auch eine Schlüsselrolle bei der Wundheilung der Haut spielt.

Fehlt c-Met in Hautzellen, kann sich kein neues Gewebe bilden und die Wunde verschließen. Die Arbeit von Jolanta Chmielowiec, Doktorandin von Prof. Walter Birchmeier, und Prof. Carmen Birchmeier ist jetzt im Journal of Cell Biology (Vol. 177, Nr. 1, pp. 151 - 162, 2007)* erschienen.

Bei einer Verletzung der Haut bildet sich zunächst quasi als Erste-Hilfe-Maßnahme Wundschorf, der die Wunde nach außen abdichtet, damit keine Keime ins Innere gelangen. Vom Wundrand her wandern anschließend Hornzellen (Keratinozyten) über die Wunde. Sie teilen sich besonders schnell und bilden rasch neues Hautgewebe, das innerhalb kurzer Zeit die Wunde abdeckt. Dieses sehr stark wachsende Gewebe, das hyperaktive Epithel, füllt die Wunde auch mit neuen Hautzellen auf, so dass sich schließlich neues Gewebe bildet, das den Wundschorf ersetzt.

Diesen Wanderungsprozeß vom Wundrand her, steuert das Signalmolekül c-Met. Es ist ein Rezeptormolekül, das auch auf der Hülle von Hautzellen sitzt, und dessen Rolle in der Entwicklungsbiologie das Labor von Prof. Carmen Birchmeier in den vergangenen Jahren intensiv erforscht hat. Mitspieler von c-Met ist ein Wachstumsfaktor, Hepatocyte Growth Factor/Scatter Factor (HGF/SF) genannt, weil er bei der Leber, einem Organ, das sich nach Verletzungen besonders rasch regeneriert, als Wachstumsfaktor für Leberzellen (Hepatozyten) entdeckt worden ist. Dieser Faktor spielt auch in der Krebsforschung als "Streufaktor" (Scatter Factor) eine grosse Rolle, wie Prof. Walter Birchmeier und seine Mitarbeiter mehrfach zeigen konnten.

Das Duo HGF/SF und c-Met regelt ganz entscheidend die Zellwanderung und wird nicht nur in der Leber, sondern auch in der Lunge, den Nieren und dem Herzen verstärkt ausgeschüttet, wenn diese Organe verletzt sind. Das ist auch bei Hautwunden der Fall, wie die MDC-Forscher jetzt zeigen konnten. HGF/SF und c-Met werden dabei verstärkt von dem hyperaktiven Hautgewebe ausgeschüttet. Dieses Gewebe puscht also selbst sein Wachstum. Während c-Met aber normalerweise sowohl in der Haut als auch in den Haarfollikeln vorkommt und bei Wunden verstärkt im hyperaktiven Epithel ausgeschüttet wird, ist HGF/SF vor einer Verletzung in den Haarfollikeln nachweisbar, nicht aber in der Haut. Erst nach einer Verletzung ist HGF/SF in der Haut aktiv, und dann vor allem an den Wundrändern des hyperaktiven Epithels.

Die MDC-Forscher hatten mit einer bestimmten Technik das Gen für c-Met in Mäusen gezielt ausgeschaltet. Sie stellten dabei fest, dass Mäuse, deren Hautzellen kein c-Met mehr bilden, bei Hautverletzungen keine neue Haut aufbauen. Bei den Mäusen, die noch über einige Hautzellen mit aktiven c-Met verfügen, weil diese Zellen der genetischen Veränderung entkommen sind, ist die Wundheilung nicht blockiert. Sie tritt aber verspätet ein und dauert doppelt solange wie im Normalfall. Das heisst, nur die Hautzellen mit aktivem c-Met können das rasch wachsende und damit rasch schützende neue Gewebe zum Verschluß einer Hautwunde aufbauen.

*c-Met is essential for wound healing in the skin

Jolanta Chmielowiec1, Malgorzata Borowiak2, Markus Morkel1, 6, Theresia Stradal3, Barbara Munz4, Sabine Werner5, Jürgen Wehland3, Carmen Birchmeier2, Walter Birchmeier1*

1Department of Cancer Biology, Max-Delbrück-Center for Molecular Medicine, Robert Rössle Strasse 10, 13125 Berlin, Germany

2Department of Neuroscience, Max-Delbrück-Center for Molecular Medicine, Robert Rössle Strasse 10, 13125 Berlin, Germany

3Department of Cell Biology, Helmholtz Centre for Infection Research, Mascheroder Weg1, D-38124 Braunschweig, Germany

4Institute of Physiology, Charité Medical University Berlin, Arnimallee 22, 14195 Berlin, Germany

5Institute of Cell Biolog, ETH Zürich, Hönggerberg, CH-8093 Zürich, Switzerland

6Present address: Max-Planck-Institute for Molecular Genetics, Ihnestraße 73, 14195 Berlin, Germany

*Corresponding author: Walter Birchmeier
Phone: +49-30-94063810, Fax: +49-30-94062656; E-mail: wbirch@mdc-berlin.de
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de/ueber_das_mdc/presse/index.htm

Weitere Berichte zu: Gewebe HGF/SF Hautzelle MDC-Forscher Wunde Wundheilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops