Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wundheilung - MDC-Forscher identifizieren Schlüsselfunktion eines Moleküls

19.04.2007
Die Haut ist das größte Organ des Menschen. Sie schützt ihn vor Umwelteinflüssen und Krankheitserregern, sie regelt den Wärmehaushalt und schützt ihn vor Austrocknung.

Sie erneuert sich beim Menschen rundherum etwa einmal im Monat, indem sie ständig die abgestorbenen Zellen auf der Hautoberfläche abstößt und durch neue, aus der untersten Schicht der Oberhaut nach oben gewanderte Zellen ersetzt. Bei Hautverletzungen ist dieser Prozess beschleunigt, damit sich die Wunden rasch schließen und keine Krankheitskeime ins Körperinnere dringen. Forscher des Max-Delbrück-Centrums für Moleklulare Medizin (MDC) Berlin-Buch haben jetzt zeigen können, dass das Signalmolekül c-Met, das in der Embryonalentwicklung Zellwachstum und Zellwanderung steuert, auch eine Schlüsselrolle bei der Wundheilung der Haut spielt.

Fehlt c-Met in Hautzellen, kann sich kein neues Gewebe bilden und die Wunde verschließen. Die Arbeit von Jolanta Chmielowiec, Doktorandin von Prof. Walter Birchmeier, und Prof. Carmen Birchmeier ist jetzt im Journal of Cell Biology (Vol. 177, Nr. 1, pp. 151 - 162, 2007)* erschienen.

Bei einer Verletzung der Haut bildet sich zunächst quasi als Erste-Hilfe-Maßnahme Wundschorf, der die Wunde nach außen abdichtet, damit keine Keime ins Innere gelangen. Vom Wundrand her wandern anschließend Hornzellen (Keratinozyten) über die Wunde. Sie teilen sich besonders schnell und bilden rasch neues Hautgewebe, das innerhalb kurzer Zeit die Wunde abdeckt. Dieses sehr stark wachsende Gewebe, das hyperaktive Epithel, füllt die Wunde auch mit neuen Hautzellen auf, so dass sich schließlich neues Gewebe bildet, das den Wundschorf ersetzt.

Diesen Wanderungsprozeß vom Wundrand her, steuert das Signalmolekül c-Met. Es ist ein Rezeptormolekül, das auch auf der Hülle von Hautzellen sitzt, und dessen Rolle in der Entwicklungsbiologie das Labor von Prof. Carmen Birchmeier in den vergangenen Jahren intensiv erforscht hat. Mitspieler von c-Met ist ein Wachstumsfaktor, Hepatocyte Growth Factor/Scatter Factor (HGF/SF) genannt, weil er bei der Leber, einem Organ, das sich nach Verletzungen besonders rasch regeneriert, als Wachstumsfaktor für Leberzellen (Hepatozyten) entdeckt worden ist. Dieser Faktor spielt auch in der Krebsforschung als "Streufaktor" (Scatter Factor) eine grosse Rolle, wie Prof. Walter Birchmeier und seine Mitarbeiter mehrfach zeigen konnten.

Das Duo HGF/SF und c-Met regelt ganz entscheidend die Zellwanderung und wird nicht nur in der Leber, sondern auch in der Lunge, den Nieren und dem Herzen verstärkt ausgeschüttet, wenn diese Organe verletzt sind. Das ist auch bei Hautwunden der Fall, wie die MDC-Forscher jetzt zeigen konnten. HGF/SF und c-Met werden dabei verstärkt von dem hyperaktiven Hautgewebe ausgeschüttet. Dieses Gewebe puscht also selbst sein Wachstum. Während c-Met aber normalerweise sowohl in der Haut als auch in den Haarfollikeln vorkommt und bei Wunden verstärkt im hyperaktiven Epithel ausgeschüttet wird, ist HGF/SF vor einer Verletzung in den Haarfollikeln nachweisbar, nicht aber in der Haut. Erst nach einer Verletzung ist HGF/SF in der Haut aktiv, und dann vor allem an den Wundrändern des hyperaktiven Epithels.

Die MDC-Forscher hatten mit einer bestimmten Technik das Gen für c-Met in Mäusen gezielt ausgeschaltet. Sie stellten dabei fest, dass Mäuse, deren Hautzellen kein c-Met mehr bilden, bei Hautverletzungen keine neue Haut aufbauen. Bei den Mäusen, die noch über einige Hautzellen mit aktiven c-Met verfügen, weil diese Zellen der genetischen Veränderung entkommen sind, ist die Wundheilung nicht blockiert. Sie tritt aber verspätet ein und dauert doppelt solange wie im Normalfall. Das heisst, nur die Hautzellen mit aktivem c-Met können das rasch wachsende und damit rasch schützende neue Gewebe zum Verschluß einer Hautwunde aufbauen.

*c-Met is essential for wound healing in the skin

Jolanta Chmielowiec1, Malgorzata Borowiak2, Markus Morkel1, 6, Theresia Stradal3, Barbara Munz4, Sabine Werner5, Jürgen Wehland3, Carmen Birchmeier2, Walter Birchmeier1*

1Department of Cancer Biology, Max-Delbrück-Center for Molecular Medicine, Robert Rössle Strasse 10, 13125 Berlin, Germany

2Department of Neuroscience, Max-Delbrück-Center for Molecular Medicine, Robert Rössle Strasse 10, 13125 Berlin, Germany

3Department of Cell Biology, Helmholtz Centre for Infection Research, Mascheroder Weg1, D-38124 Braunschweig, Germany

4Institute of Physiology, Charité Medical University Berlin, Arnimallee 22, 14195 Berlin, Germany

5Institute of Cell Biolog, ETH Zürich, Hönggerberg, CH-8093 Zürich, Switzerland

6Present address: Max-Planck-Institute for Molecular Genetics, Ihnestraße 73, 14195 Berlin, Germany

*Corresponding author: Walter Birchmeier
Phone: +49-30-94063810, Fax: +49-30-94062656; E-mail: wbirch@mdc-berlin.de
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de/ueber_das_mdc/presse/index.htm

Weitere Berichte zu: Gewebe HGF/SF Hautzelle MDC-Forscher Wunde Wundheilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten