Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Protein nimmt Maß: Wie Teile einer molekularen Maschine passgenau zusammengefügt werden

12.04.2007
Für das Verständnis zellulärer Vorgänge ist es wichtig zu wissen, wie die beteiligten Moleküle miteinander in Verbindung treten. Wissenschaftler am Max-Planck-Institut für biophysikalische Chemie in Göttingen haben jetzt mit biochemischen und biophysikalischen Methoden einen solchen Verband aus zwei Proteinen und einem RNA Molekül im Detail analysiert.

Der untersuchte Molekülkomplex ist Teil des "Spleißosoms", das eine zentrale Rolle bei der Genexpression in höheren Lebewesen spielt. (Science, 6. April 2007)

Gemeinsamkeit macht stark - dieses Prinzip gilt auch für Moleküle in lebenden Zellen. Die meisten biochemischen Prozesse werden dort von Verbänden biologischer Makromoleküle vermittelt. Einige solcher Molekülverbände sind mit zahlreichen Komponenten wahre Giganten des zellulären Nanokosmos. Um die Funktionsweise dieser molekularen Maschinen zu verstehen, ist es notwendig, ihre Konstruktion im atomaren Detail aufzuklären, vergleichbar mit der Erstellung einer technischen Zeichnung.

Das Spleißosom ist eine solche molekulare Maschine, die sich aus über hundert Proteinkomponenten und einer kleineren Zahl von RNA-Molekülen zusammensetzt. Spleißosomen bewerkstelligen einen wichtigen Schritt bei der Genexpression in höheren Organismen. Hierbei müssen aus einer "prä-mRNA", der Abschrift eines Gens der DNA, bestimmte Teile, die keine Information für die Proteinproduktion tragen, herausgeschnitten werden; die Protein-kodierenden Bereiche hingegen müssen präzise zusammengefügt werden. Durch dieses "prä-mRNA-Spleißen" entsteht eine reife mRNA (für engl. messenger ribonucleic acid), die als Grundlage für die Proteinproduktion dient.

Eine Besonderheit des Spleißosoms ist, dass es für jeden Spleißvorgang auf einer prä-mRNA neu zusammengesetzt wird. Hierzu sind die Mehrzahl der spleißosomalen Protein- und RNA-Komponenten bereits im voraus zu Untereinheiten, sog. snRNPs (für engl. small nuclear ribonucleoprotein particles), zusammengefügt, die als Baumodule fungieren. Drei dieser Module sind im U4/U6-U5 tri-snRNP zusammengefasst, das die größte Baueinheit des Spleißosoms bildet. Wenn alle Untereinheiten auf einer prä-mRNA zusammengekommen sind, werden molekulare Umbaumaßnahmen vorgenommen. Erst in deren Folge entsteht eine funktionstüchtige Spleißmaschinerie. Insbesondere muss das U4 snRNP von den U6 und U5 snRNPs abgetrennt und entfernt werden. Das Spleißosom wird dabei gleichsam entriegelt. Auf diese Weise wird der Startschuss zur Spleißreaktion erst gegeben, wenn alle Komponenten ihre funktionalen Positionen eingenommen haben.

Bei der Aktivierung des Spleißosoms könnten zwei Proteine an der Schnittstelle der U4, U6 und U5 snRNPs eine wichtige Rolle spielen: das "15.5K"-Protein, das direkt an ein RNA-Molekül (die U4 snRNA) bindet, und das "Prp31"-Protein, das eine molekulare Brücke vom U4 zum U5 snRNP schlägt. Wissenschaftler am Göttinger Max-Planck-Institut für biophysikalische Chemie haben sich nun diesen Teil der Spleißmaschinerie genauer angeschaut. Die Abteilung von Prof. Reinhard Lührmann hatte durch biochemische Analysen herausgefunden, dass erst nach der Bindung des 15.5K-Proteins an die U4 snRNA der Einbau weiterer Proteinmoleküle, darunter Prp31, vonstatten gehen kann. Solche geordneten Aufbauwege waren bereits aus anderen Protein-RNA-Komplexen bekannt. Dort fungiert das zuerst eingebaute Protein als eine Art Ordnungshüter, der die RNA in eine bestimmte Form bringt. An diese formierte RNA können dann die später bindenden Proteine andocken.

Erste Hinweise, dass im gegebenen Fall ein anderes Prinzip den Aufbau steuert, lieferte die Kernspinresonanzspektroskopie (NMR). Die Gruppe von Dr. Teresa Carlomagno stellte über dieses Verfahren fest, dass das 15.5K-Protein selbst einen Teil der Bindeoberfläche für das Prp31 zur Verfügung stellt. Die Arbeitsgruppe um Dr. Markus Wahl konnte anschließend ein genaues atomares Bild des Molekülverbandes über die Röntgenkristallographie anfertigen (siehe Abbildung). Details dieses Bildes wurden durch weitere biochemische Tests in der Lührmann-Gruppe, z.B. durch die Analyse gezielt veränderter Komponenten, untermauert. Nach den neuen Befunden wirkt das 15.5K-Protein (in der Abbildung rot) formgebend auf einen Teil der RNA (gelb) und präsentiert so dem Prp31 (blau) eine kombinierte Protein-RNA-'Landeplattform'. Im Kernbereich dieser Landeplattform passt das Prp31 zu der kombinierten Protein-RNA-Grundlage wie ein Schlüssel zum Schloss. Einen weiteren, zunächst unstrukturierten Bereich der RNA bringt das Prp31 hingegen erst bei seinem Einbau in eine stabile Form. Beim Andocken nimmt Prp31 genau Maß - es kann nur binden, wenn die RNA eine bestimmte Länge aufweist. So "weiß" Prp31, wo genau in der Zelle es "hingehört".

Die Aufklärung von Struktur-Funktionsbeziehungen zwischen biologischen Makromolekülen bildet eine wichtige Grundlage für unser Verständnis biochemischer Prozesse in lebenden Zellen. Forschungsergebnisse wie hier dargestellt sind aber nicht nur aus grundlagenwissenschaftlicher Sicht wichtig. Beispielsweise ist eine große Zahl menschlicher Erbkrankheiten auf fehlgeleitetes prä-mRNA-Spleißen zurückzuführen. Es besteht die Hoffnung, dass durch eine genauere Kenntnis der molekularen Maschinerie, die diesem zellulären Prozess zugrunde liegt, letztendlich auch ein besserer Einblick in Krankheitsmechanismen möglich wird.

Originalveröffentlichung:
Sunbin Liu, Ping Li, Olexandr Dybkov, Stephanie Nottrott, Klaus Hartmuth, Reinhard Lührmann, Teresa Carlomagno, and Markus C. Wahl: Binding of the Human Prp31 Nop Domain to a Composite RNA-Protein Platform in U4 snRNP. Science 316, 115-120 (6. April 2007)
Weitere Informationen:
Dr. Markus Wahl, Max-Planck-Institut für Biophysikalische Chemie, FG Makromolekulare Röntgenkristallographie, Am Faßberg 11, D-37077 Göttingen, Tel: 0551 201-1046, Fax: -1197, eMail: mwahl@gwdg.de

http://www.mpibpc.mpg.de/research/ags/wahl/

Dr. Teresa Carlomagno, Max-Planck-Institut für Biophysikalische Chemie, FG Flüssig-NMR-Spektroskopie, Am Faßberg 11, D-37077 Göttingen, Tel: 0551 201-2214, Fax: -2202, eMail: taco@nmr.mpibpc.mpg.de

http://www.mpibpc.mpg.de/research/ags/carlomagno/

Prof. Dr. Reinhard Lührmann, Max-Planck-Institut für biophysikalische Chemie, Abt. Zelluläre Biochemie, Am Faßberg 11, D-37077 Göttingen, Tel: 0551 201-1405, Fax: -1197, eMail: reinhard.luehrmann@mpi-bpc.mpg.de

http://www.mpibpc.gwdg.de/research/dep/luehrmann/

Dr. Christoph Nothdurft | idw
Weitere Informationen:
http://www.mpibpc.mpg.de
http://www.mpibpc.mpg.de/groups/pr/PR/2007/07_08/

Weitere Berichte zu: 5K-Protein D-37077 Molekül Protein Prozess Prp31 RNA Spleißosom

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen