Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Protein nimmt Maß: Wie Teile einer molekularen Maschine passgenau zusammengefügt werden

12.04.2007
Für das Verständnis zellulärer Vorgänge ist es wichtig zu wissen, wie die beteiligten Moleküle miteinander in Verbindung treten. Wissenschaftler am Max-Planck-Institut für biophysikalische Chemie in Göttingen haben jetzt mit biochemischen und biophysikalischen Methoden einen solchen Verband aus zwei Proteinen und einem RNA Molekül im Detail analysiert.

Der untersuchte Molekülkomplex ist Teil des "Spleißosoms", das eine zentrale Rolle bei der Genexpression in höheren Lebewesen spielt. (Science, 6. April 2007)

Gemeinsamkeit macht stark - dieses Prinzip gilt auch für Moleküle in lebenden Zellen. Die meisten biochemischen Prozesse werden dort von Verbänden biologischer Makromoleküle vermittelt. Einige solcher Molekülverbände sind mit zahlreichen Komponenten wahre Giganten des zellulären Nanokosmos. Um die Funktionsweise dieser molekularen Maschinen zu verstehen, ist es notwendig, ihre Konstruktion im atomaren Detail aufzuklären, vergleichbar mit der Erstellung einer technischen Zeichnung.

Das Spleißosom ist eine solche molekulare Maschine, die sich aus über hundert Proteinkomponenten und einer kleineren Zahl von RNA-Molekülen zusammensetzt. Spleißosomen bewerkstelligen einen wichtigen Schritt bei der Genexpression in höheren Organismen. Hierbei müssen aus einer "prä-mRNA", der Abschrift eines Gens der DNA, bestimmte Teile, die keine Information für die Proteinproduktion tragen, herausgeschnitten werden; die Protein-kodierenden Bereiche hingegen müssen präzise zusammengefügt werden. Durch dieses "prä-mRNA-Spleißen" entsteht eine reife mRNA (für engl. messenger ribonucleic acid), die als Grundlage für die Proteinproduktion dient.

Eine Besonderheit des Spleißosoms ist, dass es für jeden Spleißvorgang auf einer prä-mRNA neu zusammengesetzt wird. Hierzu sind die Mehrzahl der spleißosomalen Protein- und RNA-Komponenten bereits im voraus zu Untereinheiten, sog. snRNPs (für engl. small nuclear ribonucleoprotein particles), zusammengefügt, die als Baumodule fungieren. Drei dieser Module sind im U4/U6-U5 tri-snRNP zusammengefasst, das die größte Baueinheit des Spleißosoms bildet. Wenn alle Untereinheiten auf einer prä-mRNA zusammengekommen sind, werden molekulare Umbaumaßnahmen vorgenommen. Erst in deren Folge entsteht eine funktionstüchtige Spleißmaschinerie. Insbesondere muss das U4 snRNP von den U6 und U5 snRNPs abgetrennt und entfernt werden. Das Spleißosom wird dabei gleichsam entriegelt. Auf diese Weise wird der Startschuss zur Spleißreaktion erst gegeben, wenn alle Komponenten ihre funktionalen Positionen eingenommen haben.

Bei der Aktivierung des Spleißosoms könnten zwei Proteine an der Schnittstelle der U4, U6 und U5 snRNPs eine wichtige Rolle spielen: das "15.5K"-Protein, das direkt an ein RNA-Molekül (die U4 snRNA) bindet, und das "Prp31"-Protein, das eine molekulare Brücke vom U4 zum U5 snRNP schlägt. Wissenschaftler am Göttinger Max-Planck-Institut für biophysikalische Chemie haben sich nun diesen Teil der Spleißmaschinerie genauer angeschaut. Die Abteilung von Prof. Reinhard Lührmann hatte durch biochemische Analysen herausgefunden, dass erst nach der Bindung des 15.5K-Proteins an die U4 snRNA der Einbau weiterer Proteinmoleküle, darunter Prp31, vonstatten gehen kann. Solche geordneten Aufbauwege waren bereits aus anderen Protein-RNA-Komplexen bekannt. Dort fungiert das zuerst eingebaute Protein als eine Art Ordnungshüter, der die RNA in eine bestimmte Form bringt. An diese formierte RNA können dann die später bindenden Proteine andocken.

Erste Hinweise, dass im gegebenen Fall ein anderes Prinzip den Aufbau steuert, lieferte die Kernspinresonanzspektroskopie (NMR). Die Gruppe von Dr. Teresa Carlomagno stellte über dieses Verfahren fest, dass das 15.5K-Protein selbst einen Teil der Bindeoberfläche für das Prp31 zur Verfügung stellt. Die Arbeitsgruppe um Dr. Markus Wahl konnte anschließend ein genaues atomares Bild des Molekülverbandes über die Röntgenkristallographie anfertigen (siehe Abbildung). Details dieses Bildes wurden durch weitere biochemische Tests in der Lührmann-Gruppe, z.B. durch die Analyse gezielt veränderter Komponenten, untermauert. Nach den neuen Befunden wirkt das 15.5K-Protein (in der Abbildung rot) formgebend auf einen Teil der RNA (gelb) und präsentiert so dem Prp31 (blau) eine kombinierte Protein-RNA-'Landeplattform'. Im Kernbereich dieser Landeplattform passt das Prp31 zu der kombinierten Protein-RNA-Grundlage wie ein Schlüssel zum Schloss. Einen weiteren, zunächst unstrukturierten Bereich der RNA bringt das Prp31 hingegen erst bei seinem Einbau in eine stabile Form. Beim Andocken nimmt Prp31 genau Maß - es kann nur binden, wenn die RNA eine bestimmte Länge aufweist. So "weiß" Prp31, wo genau in der Zelle es "hingehört".

Die Aufklärung von Struktur-Funktionsbeziehungen zwischen biologischen Makromolekülen bildet eine wichtige Grundlage für unser Verständnis biochemischer Prozesse in lebenden Zellen. Forschungsergebnisse wie hier dargestellt sind aber nicht nur aus grundlagenwissenschaftlicher Sicht wichtig. Beispielsweise ist eine große Zahl menschlicher Erbkrankheiten auf fehlgeleitetes prä-mRNA-Spleißen zurückzuführen. Es besteht die Hoffnung, dass durch eine genauere Kenntnis der molekularen Maschinerie, die diesem zellulären Prozess zugrunde liegt, letztendlich auch ein besserer Einblick in Krankheitsmechanismen möglich wird.

Originalveröffentlichung:
Sunbin Liu, Ping Li, Olexandr Dybkov, Stephanie Nottrott, Klaus Hartmuth, Reinhard Lührmann, Teresa Carlomagno, and Markus C. Wahl: Binding of the Human Prp31 Nop Domain to a Composite RNA-Protein Platform in U4 snRNP. Science 316, 115-120 (6. April 2007)
Weitere Informationen:
Dr. Markus Wahl, Max-Planck-Institut für Biophysikalische Chemie, FG Makromolekulare Röntgenkristallographie, Am Faßberg 11, D-37077 Göttingen, Tel: 0551 201-1046, Fax: -1197, eMail: mwahl@gwdg.de

http://www.mpibpc.mpg.de/research/ags/wahl/

Dr. Teresa Carlomagno, Max-Planck-Institut für Biophysikalische Chemie, FG Flüssig-NMR-Spektroskopie, Am Faßberg 11, D-37077 Göttingen, Tel: 0551 201-2214, Fax: -2202, eMail: taco@nmr.mpibpc.mpg.de

http://www.mpibpc.mpg.de/research/ags/carlomagno/

Prof. Dr. Reinhard Lührmann, Max-Planck-Institut für biophysikalische Chemie, Abt. Zelluläre Biochemie, Am Faßberg 11, D-37077 Göttingen, Tel: 0551 201-1405, Fax: -1197, eMail: reinhard.luehrmann@mpi-bpc.mpg.de

http://www.mpibpc.gwdg.de/research/dep/luehrmann/

Dr. Christoph Nothdurft | idw
Weitere Informationen:
http://www.mpibpc.mpg.de
http://www.mpibpc.mpg.de/groups/pr/PR/2007/07_08/

Weitere Berichte zu: 5K-Protein D-37077 Molekül Protein Prozess Prp31 RNA Spleißosom

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie