Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gläsernes Gehirn schafft Durchblick

10.04.2007
Forschern am Max-Planck-Institut für Psychiatrie gelingt hochauflösende 3D-Rekonstruktion von neuronalen Strukturen des Mäusegehirns

Der gläserne Mensch wirkt eher bedrohlich, mit dem gläsernen Gehirn erfüllt sich ein großer Wunsch - zumindest für Neurologen: Es verschafft ihnen die Möglichkeit, die komplexen Strukturen der Nervenzellen und ihrer Verbindungen untereinander sichtbar zu machen und räumlich zu erfassen. Wissenschaftler des Max-Planck-Instituts für Psychiatrie in München präsentieren nun erstmals dreidimensionale Abbildungen der neuronalen Struktur von Mäusegehirnen. An solchen gläsernen Gehirnen lässt sich in Zukunft möglicherweise untersuchen, wie sich das Gefüge der Nervenzellen beispielsweise beim Lernen verändert. (Nature Methods, April 2007)


Ausschnitt einer Rekonstruktion des Hippocampus. Einzelne Nervenzellen sind detailliert zu sehen. Bild: MPI für Psychiatrie


Prinzip der Ultramikroskopie: das Präparat wird seitlich von einem flachen Band Laserstrahlung durchleuchtet, senkrecht dazu ist das Mikroskop montiert, dass die Fluoreszenz der Nervenzellen misst. Bild: MPI für Psychiatrie

Jede einzelne Nervenzelle in einem Gehirn abzubilden, war trotz der rasanten Entwicklung neuer Abbildungsverfahren bislang nicht möglich. Techniken wie Computertomographie (CT) und Magnetresonanztomographie (MRI) liefern zwar detaillierte Abbildungen großer Organe, erreichen dabei aber lediglich Auflösungen von etwas weniger als einem Millimeter. Andererseits versagen hochauflösende mikroskopische Methoden bei ausgedehnten Präparaten. Der Forschungsgruppe um Prof. Hans-Ulrich Dodt ist am Max-Planck-Institut für Psychiatrie in München nun ein großer Schritt gelungen, diese Lücke zu schließen.

Indem die Wissenschaftler eine spezielle Präparationsmethode mit der Ultramikroskopie kombinierten, einer von ihnen neu entwickelten und besonders hochauflösenden Mikroskopiertechnik, rekonstruierten sie die neuronalen Strukturen eines Mäusegehirns mit einer Auflösung von wenigen Mikrometern. Isolierte Hippocampi aus Mäusegehirnen bildeten sie mit solcher Präzision ab, dass darauf einzelne dendritische Dornen, feinste Auswüchse der verzweigten Nervenzellen, deutlich zu sehen sind. Bilder von Mäuseembryonen und Fruchtfliegen belegen, dass sich die Methode auch auf andere Organismen anwenden lässt.

Hans-Ulrich Dodt interessiert vor allem, ob sich mit diesem Verfahren neuronale Veränderungen nach Lernprozessen ausfindig machen lassen. "Der vergleichsweise schnelle und einfache Prozess könnte sich gut eignen, um die neuronalen Strukturen vieler Hirne untereinander zu vergleichen", sagt Dodt. Die detaillierten anatomischen Informationen ergänzen auch die bereits existierenden bildgebenden Verfahren: Sie könnten also dazu beitragen, funktionale Zusammenhänge im Gehirn besser zu verstehen.

Um die Technik der Ultramikroskopie auf ein Mäusegehirn anzuwenden, mussten die Forscher das Gewebe zunächst durchsichtig machen. Dazu dehydrierten sie die Organe und legten sie anschließend in ein Öl ein, dessen Brechungsindex dem von tierischem Protein entspricht. So verhinderten sie, dass das Licht des Mikroskops auf seinem Weg durch das Präparat Bereiche unterschiedlicher Brechzahl passieren muss. Licht, das auf das präparierte Gewebe fällt, wird daher nicht gestreut, und das Organ erscheint durchsichtig. "Das ist eine uralte Technik, die vor über hundert Jahren erfunden wurde, dann aber in Vergessenheit geraten ist", erläutert Dodt. Und fügt hinzu, dass man denselben Effekt auch im Alltag beobachten kann: "Gibt man einen Tropfen Öl auf ein Blatt Papier, so wird das Papier an dieser Stelle auch lichtdurchlässig."

Derart präparierte Organe lassen sich mittels Ultramikroskopie untersuchen. Dabei richten die Forscher ein wenige Mikrometer flaches Band aus Laserlicht von der Seite auf das Mäusegehirn, so dass nur eine dünne Schicht des Präparats durchleuchtet wird. Nervenzellen innerhalb dieser Schicht fluoreszieren, und das Fluoreszenzlicht zeichneten Dodt und seine Mitarbeiter mit Hilfe eines umgebauten Mikroskops und einer CCD-Kamera auf. Da sie das Präparat schrittweise durch den Laserstrahl nach oben bewegten, erhielten sie eine Folge von digitalen Bildern, welche sie anschließend wie bei einer CT im Computer zu einer dreidimensionalen Abbildung des Gehirns zusammensetzten.

Technisch ist die vielversprechende Methode allerdings noch nicht ganz ausgereift. So sind beispielsweise die optischen Elemente nicht auf die Abbildung eines in Öl lagernden Präparats abgestimmt. "Das, was wir momentan benutzen ist eine absolute Notlösung", so Dodt, der inzwischen auf den Lehrstuhl für Bioelektronik der Technischen Universität Wien berufen wurde. Auch mit Hilfe adaptiver Optik ließe sich die Qualität der Bilder wesentlich verbessern. "Dabei handelt es sich um eine Technik aus der Astronomie", erklärt Dodt. Astronomen unterbinden damit das Flackern der Sterne, indem sie die Schwankungen des Brechungsindex in der Atmosphäre mit deformierbaren Spiegeln ausgleichen. Sie erhalten so wesentlich schärfere Abbildungen von Sternen und Galaxien. "Das ließe sich wunderbar bei der Ultramikroskopie anwenden", sagt Dodt.

Neben dem wissenschaftlichen Einsatz bietet die unter der Regie von Dodt entwickelte Methode die Möglichkeit, anhand der aufgenommenen Daten einen Flug durch das neuronale Netz des gläsernen Gehirns zu simulieren. "So könnten die Aufnahmen zukünftig in einer Playstation Brain, etwa für Medizinstudenten und Schüler zum Einsatz kommen", sagt Dodt.

Originalveröffentlichung:

Hans-Ulrich Dodt, Ulrich Leischner, Anja Schierloh, Nina Jährling, Christoph Peter Mauch, Katrin Deininger, Jan Michael Deussing, Matthias Eder, Walter Zieglgänsberger, Klaus Becker; Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain

Nature Methods, April 2007.

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Abbildung Mäusegehirn Nervenzelle Organ Ultramikroskopie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics