Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Faszination Spinnenseide

05.04.2007
Gentechnisch hergestellte Spinnenseidenproteine weisen den Weg zum Verständnis des Spinnvorgangs

Stärker als Stahl und elastischer als Gummi: Spinnenseiden sind in ihrer Dehnbarkeit, Reißfestigkeit und Zähigkeit unübertroffen. Spinnenseide wäre das ideale Material für eine ganze Reihe medizinischer und technischer Anwendungen, entsprechend interessiert sind Forscher daran, das Geheimnis der Spinnen zu ergründen und nachzuahmen. Ein Team um Thomas Scheibel von der TU München ist auf diesem Weg nun einen Schritt weiter gekommen. Wie sie in der Zeitschrift Angewandte Chemie berichten, spielt der Wechsel zwischen wasserfreundlichen und fettfreundlichen Eigenschaften der Seidenproteine beim Spinnprozess eine wichtige Rolle.

Vom Prinzip her entspricht das Verspinnen von Spinnenseide einem Phasenübergang von einer Lösung in einen festen Faden, genaue Details waren bisher aber noch weitgehend unbekannt. Die Seide, aus der Radnetzspinnen Rahmen und Speichen ihrer Netze spinnen, und mit der sie sich auf der Flucht abseilen, besteht aus zwei unterschiedlichen Proteinen. Dem Münchner Team ist es gelungen, eines der Spinnenseidenprotein der Gartenkreuzspinne gentechnisch herzustellen. Beim Reinigen des Proteins durch Dialyse beobachteten die Forscher eine Auftrennung in zwei verschiedene flüssige Phasen. Während die eine Phase aus Protein-Dimeren bestand, war die zweite aus Oligomeren zusammengesetzt, das heißt, mehrere Proteineinheiten sind zu größeren Einheiten verknüpft. Nach Zugabe von Kaliumphosphat, einem natürlichen Initiator der Seidenaggregation, ließ sich die Flüssigkeit zu Fäden ziehen. "Offenbar ist es nicht eine Strukturänderung des Proteins, sondern eine Änderung im Oligomerisierunggrad, die ausschlaggebend für die Fadenbildung ist," schließt Scheibel.

In der Spinndrüse der Spinne befindet sich eine Seidenlösung mit extrem hoher Proteinkonzentration. Diese Lösung enthält zudem eine hohe Konzentration an Natriumchlorid, das die Oligomer-Bildung unterdrückt. Entfernt man dieses Natriumchlorid, aggregieren die Proteine zu Oligomeren.

Daneben spielt auch der pH-Wert eine entscheidende Rolle beim Spinnen: In der Spinndrüse ist der pH relativ hoch, um dann innerhalb des Spinnkanals in den leicht sauren Bereich zu sinken. Bei dem künstlich erzeugten Spinnenprotein konnte keine Phasentrennung beobachtet werden, wenn die Forscher den pH im alkalischen Bereich hielten. Bei hohem pH sind die der normalerweise ungeladenen Tyrosin-Gruppen des Proteins deprotoniert und damit negativ geladen. Diese Ladung schwächt die Wechselwirkungen zwischen den wasserabweisenden, fettfreundlichen Bereichen der Proteine, die für die Oligomerisierung notwendig sind.

"Unsere Erkenntnisse bilden eine Grundlage," hofft Scheibel, "um einen effektiven Spinnprozess für gentechnisch erzeugte Spinnenseide zu etablieren."

Angewandte Chemie: Presseinfo 15/2007

Autor: Thomas Scheibel, Technische Universität München, Garching (Germany), http://www.fiberlab.de/homepages/tom/index_tom.html

Angewandte Chemie 2007, 119, No. 19, doi: 10.1002/ange.200604718

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://presse.angewandte.de
http://www.fiberlab.de/homepages/tom/index_tom.html

Weitere Berichte zu: Faszination Protein Spinndrüse Spinnen Spinnenseide

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufschlussreiche Partikeltrennungen
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Bildgebung von entstehendem Narbengewebe
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikrophotonik – Optische Technologien auf dem Weg in die Hochintegration

21.07.2017 | Förderungen Preise

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie