Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Zellen nicht richtig kommunizieren - Basis für Tumoren

30.03.2007
Hrsg: Deutsche Neurowissenschaftliche Gesellschaft und Universitätsmedizin Göttingen, Abt. Neuroanatomie

Zellen, die nicht mehr richtig miteinander kommunizieren können, legen den Grundstein für eine veränderte Embryonalentwicklung und die Entwicklung von Krebstumoren. Eines der wichtigsten unter den zellulären Kommunikationssystemen ist der Wnt-Signalweg.

"Das Enzym Casein Kinase 1y (CK1y) beeinflusst diesen Signalweg und ist für die Signalweiterleitung von der Zellmembran in das Zellinnere verantwortlich. Wird das Enzym zum Beispiel im Froschembryo ausgeschaltet, so entwickeln sich Kaulquappen mit verkümmertem Hinterleib und vergrößertem Kopf," sagte Prof. Dr. Christof Niehrs, Deutsches Krebsfor¬schungs¬zentrum Heidelberg (DKFZ), auf der 7. Göttinger Tagung der Deutschen Neurowissenschaftlichen Gesellschaft. Werde die CK1y Konzentration dagegen erhöht, entstehen missgebildete kopflose Kaulquappen. Auch bei den meisten häufigen Tumorerkrankungen spielen Veränderungen in verschiedenen Genen, die für die Signalweiterleitung verantwortlich sind, eine große Rolle. Daher sind die Forschungen zu den Signalwegen im menschlichen Körper von großem Interesse für die Krebsforschung. Je mehr dieser Signalwege erforscht sind, desto größer die Option, mit modernen Mitteln gezielt in die fehlgeleitete Kommunikation entarteter Zellen einzugreifen.

Rund 20 verschiedene Vertreter der Wnt-Proteinfamilie starten eine Signalkaskade, die Befehle von speziellen Andockstellen auf der Zellmembran über das Zytoplasma bis in den Zellkern weiterleiten. Die Zelle reagiert auf das Signal, indem sie bestimmte Gene an- oder abschaltet. Wissenschaftler um Professor Dr. Christof Niehrs haben in der Zeitschrift Nature den entschei¬denden Schritt der Signalweiterleitung von der Zellmembran ins Zellplasma beschrieben - eine bislang unbekannte Etappe auf dem Weg der Nachrichtenübermittlung. Das Enzym Casein Kinase 1gamma (CK1gamma) ist unerlässlich, um die Wnt-Signale von den Rezeptoren der Zellmembran ins Zellinnere weiterzuleiten.

Bei Wirbeltieren entscheiden Wnt-Signale über die Ausprägung der Körperachsen. Dass CK1gamma eine wichtige Komponente des Wnt-Signalwegs ist, demonstrierten die Heidelberger Forscher an der Wirkung von CK1gamma auf Embryonen des Krallenfroschs Xenopus. Je nachdem, ob das Enzym im Froschembryo aus- oder eingeschaltet wird, entwickeln sich Kaulquappen mit verkümmertem Hinterleib und vergrößertem Kopf oder missgebildete kopflose Kaulquappen. Die Funktion von CK1gamma ist in der Evolution hoch konserviert: Eine Blockade von CK1gamma unterbricht auch in Zellen der Taufliege Drosophila den Wnt-Signalweg.

Publikation: Gary Davidson, Wei Wu, Jinlong Shen, Josipa Bilic, Ursula Fenger, Peter Stannek, Andrei Glinka und Christof Niehrs: Casein kinase 1gamma couples WNT receptor activation to cytoplasmic signal transduction. Nature, 8. Dezember 2005

Weitere Informationen:
Prof. Dr. Christof Niehrs
Deutsches Krebsforschungszentrum Heidelberg (DKFZ)
Im Neuenheimer Feld 280
69120 Heidelberg
Tel.: 0049/6221/42 46 90
eMail: niehrs@dkfz.de

Stefan Weller | idw
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE