Köpfe zählen oder Räume vermessen? – Bakterielle Kommunikationsstrategien unter der Lupe

Bisher gab es zwei Theorien hierzu: Entweder wird die Freisetzung von Signalstoffen als kooperative Strategie verstanden, mit der die Zelldichte bestimmt werden kann (Quorum Sensing) oder – alternativ – als nichtkooperative Strategie, bei der mit Hilfe des Signalstoffs lediglich festgestellt wird, wie groß der die Zelle umgebende Raum ist (Diffusion Sensing).

Wissenschaftler des GSF – Forschungszentrums für Umwelt und Gesundheit (Mitglied der Helmholtz-Gemeinschaft) konnten nun zeigen, dass beide Ansätze nur theoretische Extreme einer Gesamtstrategie sind, mit der Bakterien feststellen, ob sich in ihrer Umweltsituation der Energieaufwand lohnt, Stoffe wie z.B. Antibiotika oder Exoenzyme zu produzieren.

„Diese Gesamtstrategie – das sogenannte Efficiency Sensing – führt die bisherigen Theorien zusammen und lässt erstmals verstehen, wie und zu welchem Zweck bakterielle Kommunikation funktioniert“, erklärt Dr. Burkhard Hense vom GSF-Institut für Biomathematik und Biometrie (IBB), der die verschiedenen Strategien mit Hilfe mathematischer Modelle analysierte.

Entdeckt wurde die mikrobielle Kommunikation in durchmischten flüssigen Laborkulturen, z.B. des Leuchtbakteriums Vibrio fischeri, dessen Biolumineszenz erst ab einer bestimmten Zelldichte auftritt. Daher wurde die Freisetzung von Signalmolekülen zunächst als Strategie verstanden, die Zelldichte zu bestimmen (Quorum Sensing). Allerdings stellt Quorum Sensing mit seinem kooperativen Ansatz aus evolutionärer Sicht keine stabile Überlebensstrategie dar, weil auch „Schmarotzer“ von den freigesetzten Substanzen profitieren können, ohne die Kosten für ihre Produktion tragen zu müssen. Etwas simpler ist der Ansatz des Diffusion Sensing: Hier wird davon ausgegangen, dass das Bakterium mit Hilfe der Signalstoffe misst, ob der umgebende Raum klein genug ist, um eine für den gewünschten Effekt notwendige Wirkstoffkonzentration zu erreichen – andere Bakterien müssen im Gegensatz zum Quorum Sensing nicht unbedingt beteiligt sein.

In einer komplexen und heterogenen Umgebung wie dem Wurzelraum von Pflanzen haben allerdings beide Kommunikationsstrategien ihre Schwächen: Die Wurzeloberfläche stellt eine hoch komplexe Matrix dar, in der Feststoffe, Gele, Flüssigkeiten und Gase kleinräumig wechseln und wo zudem zahlreiche andere Organismen dazwischen reden.

In Kooperation mit Professor Dr. Anton Hartmann und Dr. Michael Rothballer von der GSF-Abteilung Mikroben-Pflanzen-Interaktionen (AMP) untersuchte Hense im Rahmen des interdisziplinären Querschnittsthemas „Molekulare Interaktionen in der Rhizosphäre“ deshalb besonders diesen Lebensraum. Mit Hilfe mathematischer Modelle konnte er zeigen, dass die räumliche Verteilung der Bakterien in der Rhizosphäre die Kommunikaton oft stärker beeinflusst als die Zelldichte oder die Größe der Umgebung. Deshalb entwickelten die Wissenschaftler eine Synthese beider Modelle, das Efficiency Sensing: Die Mikroben nehmen immer eine Mischung aus Zelldichte, Zellverteilung und Diffusionslimitierung durch räumliche Bedingungen wahr, weil sich diese Punkte gar nicht exakt voneinander trennen lassen – welcher Aspekt vorherrscht, kommt auf die Umstände an.

Auch das Problem der „Schmarotzer“ wird umgangen, wenn die räumliche Verteilung der Zellen berücksichtigt wird: Auf Wurzeloberflächen oder in Biofilmen bilden verwandte Organismen häufig klonale Mikrokolonien. Da in diesem Fall alle Verwandten in nächster Nähe sitzen, kommen sie auch am ehesten in den Genuss der Signalstoffe und der durch die Signalstoffe ausgelösten Reaktionen – Fremde bleiben weitgehend ausgeschlossen. Solche Aggregationen nahe verwandter Zellen ermöglichen somit eine evolutionär stabile Kooperation und bieten einen effektiven Schutz gegen Störungen von außen.

„Efficiency Sensing wurde zwar aus Beobachtungen und Modellierungen der Bedingungen der Rhizosphäre entwickelt, ist aber auf andere bakterielle Lebensräume übertragbar“, betont Hense. Manipulationen des bakteriellen Signalsystems stellen daher in verschiedenen Bereichen des Lebens einen viel versprechenden Ansatz dar, z.B. in der Landwirtschaft (Unterstützung von pflanzenwachstumsfördernden Bakterien, Hemmung von Schadorganismen) oder der Medizin (Bekämpfung von Pathogenen). Ein besseres Verständnis der ökologischen Funktionsweise des Signalsystems unter natürlichen Bedingungen, wie es Efficiency Sensing erlaubt, ist Voraussetzung dafür.

Quelle: „Opinion: Does efficiency sensing unify diffusion and quorum sensing?“ Burkhard A. Hense, Christina Kuttler, Johannes Müller, Michael Rothballer, Anton Hartmann and Jan-Ulrich Kreft; Nature Reviews Microbiology 5, 230-239 (March 2007) | doi:10.1038/nrmicro1600

Kontakt zur GSF- Pressestelle:
GSF – Forschungszentrum für Umwelt und Gesundheit
Kommunikation
Tel: 089 3187-2460
Fax 089 3187-3324
E-Mail: oea@gsf.de

Media Contact

Michael van den Heuvel idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer