Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Träum ich oder wach ich?

26.03.2007
Max-Planck-Forschern gelingen neue Einblicke in das schlafende Gehirn

Im Schlaf sind wir sensorisch weitgehend von der Außenwelt abgeschnitten - es sei denn, der Wecker holt uns unsanft aus unseren Träumen. Gelegentlich passiert es jedoch, dass das Weckerklingeln nicht zum Aufwachen führt, sondern in das Traumerleben eingebaut wird - und wir verschlafen. Forscher am Max-Planck-Institut für Psychiatrie in München konnten nun erstmals zeigen, wie sich das Gehirn während der Traumphasen verhält: In Phasen von maximaler Aktivität scheinen die beteiligten Gehirnzentren so sehr mit sich selbst beschäftigt zu sein, dass äußere Reize nicht mehr wahrgenommen werden. Dieser Zustand tritt aber immer nur kurzzeitig auf, in den dazwischen liegenden Phasen können Außenreize rudimentär verarbeitet werden. So kann unter anderem erklärt werden, warum ein Sinneseindruck mitunter wahrgenommen und in das Traumgeschehen integriert wird.


Funktionale Kernspintomografie eines gesunden schlafenden Probanden: Während des tonischen REM-Schlafes, gekennzeichnet durch das kurzzeitige Ausbleiben der raschen Augenbewegungen, führen akustische Reize zu einer geringen Aktivierung des entsprechenden sensorischen Areals im Gehirn, dem auditiven Kortex (linkes Bild). Im Gegensatz dazu ist in phasischen REM-Perioden, mit Augenbewegungen, das Gehirn durch Außenreize weitgehend nicht stimulierbar, sondern zeigt eine eigenständig generierte Aktivität in weitreichenden Gehirnregionen - ein Indiz für den Traumprozess (rechtes Bild). Bild: MPI für Psychiatrie

Bislang wurden Schlafphänomene vor allem anhand von Messungen der Gehirnströme untersucht. Wissenschaftler am Max-Planck-Institut für Psychiatrie in München konnten erstmalig diese Gehirnströme messen und gleichzeitig mit Hilfe bildgebender Verfahren (funktioneller Kernspintomografie) die Aktivität des schlafenden Gehirns darstellen. Dabei gelang es Michael Czisch und seinem Team eine technisch anspruchsvolle Anforderung zu lösen: nämlich die Messung kleinster Hirnströme bei gleichzeitiger Wirkung eines starken Magnetfeldes. Die zusätzliche experimentelle Herausforderung, bei Lautstärken von mehr als 90 Dezibel einzuschlafen, wurde nach Schlafentzug von wenigen gesunden Probanden gemeistert.

Im Experiment untersuchten die Wissenschaftler, wie das Gehirn im Schlaf auf akustische Reize, wie beispielsweise einen regelmäßig wiederkehrenden Ton oder Klaviermusik, reagiert. In den frühen Morgenstunden konnte auch der REM-Schlaf, der besonders mit intensivem Traumerleben in Verbindung gebracht wird, untersucht werden. Dieser besondere Bewusstseinszustand, der seinen Namen den gelegentlich auftretenden raschen Augenbewegungen (englisch: rapid eye movements) verdankt, zeichnet sich durch hohe Gehirnaktivität aus. In diesem Schlafstadium unterliegen wir einer vorübergehenden Lähmung, nicht zuletzt um mögliche Traumerlebnisse körperlich nicht auszuleben.

... mehr zu:
»REM »Traumerleben

Die spannende Entdeckung: der REM-Schlaf kann in zwei unterschiedliche Aktivitätsphasen unterschieden werden (siehe Abbildung). Wenn besonders viele rasche Augenbewegungen aufgezeichnet wurden, war die Aktivität in verschiedenen Gehirnregionen besonders hoch. Auch die Areale, die das Gefühlsleben bestimmen, zeigten dabei eine hohe Aktivität. Die von außen eingespielten Geräusche wurden jedoch offensichtlich vom Gehirn in diesen Phasen ausgeblendet. Die hohe Gehirnaktivität wird als neurologisches Korrelat des - oftmals intensiven - Traumerlebens gedeutet. "Da währenddessen auf äußere Reize kaum reagiert werden kann und der Schläfer quasi wehrlos ist, tauchen diese intensiven Phasen in immer wiederkehrenden, aber meist sehr kurzen Perioden auf", erklärt Michael Czisch. Nicht zuletzt zum Schutz des schlafenden Organismus liegen dazwischen REM-Schlaf-Phasen, bei denen die Reaktionsfähigkeit auf Außenreize wieder erhöht ist - in diesen Phasen kann uns das Klingeln eines Weckers dann wieder erreichen.

Originalveröffentlichung:

Wehrle R, Kaufmann C, Wetter TC, Holsboer F, Auer DP, Pollmaecher T, Czisch M
Functional microstates within human REM sleep: first evidence from fMRI of a thalamocortical network specific for phasic REM periods

Eur J Neurosci. 2007 Feb; 25(3):863-71

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: REM Traumerleben

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht „Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz
08.12.2017 | Technische Universität Dresden

nachricht Die Zukunft der grünen Gentechnik
08.12.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie