Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entscheidungshelfer für neurale Stammzellen entdeckt

23.03.2007
RUB-Forscher berichten im Journal of Biological Chemistry
RUB-Forscher verstehen wichtigen Schritt der Gehirnentwicklung
"Genschalter" bestimmt Menge und Verteilung von Nervenzellen
Einen wichtigen "Entscheidungshelfer", der das Verhalten von Nervenzell-Vorfahren während der Gehirnentwicklung bestimmt, haben Forscher der Projektgruppe "neurale Stammzellen" erforscht, und damit einen wichtigen Schritt zum Verständnis der Entwicklung des Nervensystems gemacht. Dipl. Biochem. Ursula Egbers, Dr. Alexander von Holst und Prof. Dr. Andreas Faissner (Lehrstuhl für Zellmorphologie und Molekulare Neurobiologie) untersuchten in Zusammenarbeit mit Prof. Dr. Alain Prochiantz (École Normale Supérieure, Paris) isolierte neurale Stammzellen aus den Gehirnen von Mäusen. Dabei konnten sie erstmals einen Zusammenhang zwischen zwei Molekülen herstellen, die während der Entwicklung des Gehirns wichtige Funktionen erfüllen. Die Forschungsergebnisse sind in der März-Ausgabe des renommierten "Journal of Biological Chemistry" veröffentlicht.

Urahnen der Nervenzellen haben drei Wahlmöglichkeiten

Im Gehirn gibt es viele Milliarden Nervenzellen, die Informationen verarbeiten und weitergeben. Nervenzellen und ihre "Helfer", die Gliazellen, haben gemeinsame "Urahnen". Diese als neurale Stammzellen bezeichneten Urahnen bringen während der Entwicklung alle Zellen des Nervensystems hervor. Die Nachwuchsprojektgruppe um Alexander von Holst interessiert, welche Faktoren für das Verhalten von Stammzellen entscheidend sind. In deren Umgebung - in der Stammzellnische - nehmen viele verschiedene Moleküle Einfluss auf die Entscheidungsfindungen von Stammzellen, die zum einen die Möglichkeit haben, durch Teilungen weitere neurale Stammzellen hervorzubringen, zum anderen entscheiden können, ob sie zu Nervenzellen oder zu Gliazellen werden.

Tenascin C ist Entscheidungshelfer für Stammzellen

Ein wichtiges Molekül, das diese Entscheidungen beeinflusst, ist Tenascin C, welches in der Umgebung der Zellen vorliegt und von dort auf sie wirken kann. Die Menge und die Art dieses Moleküls bestimmt in entscheidender Weise, welchen Weg die neuralen Stammzellen einschlagen werden. Bis zu 20 verschiedene Formen von Tenascin C hat Ursula Egbers im Rahmen ihrer Doktorarbeit in neuralen Stammzellen gefunden.

Genschalter interagiert mit der Spleißmaschinerie

Den Forschern ist es nun gelungen, die Stammzellen mit einer neuen Methode, der so genannten Nukleofektion, vorübergehend genetisch zu verändern. Dadurch produzieren die Stammzellen eine große Menge eines künstlich eingeführten Gens, den Genschalter Pax6. Dieser Schalter erfüllt eine entscheidende Funktion bei der Entwicklung des Auges und des Vorderhirns. Ohne Pax6 gibt es wesentlich weniger Nervenzellen, und die Verteilung der Zellen an die richtigen Positionen ist gestört. In den neuralen Stammzellen bewirkt Pax6, dass bestimmte Formen von Tenascin C verstärkt produziert werden, während kurze Tenascin C-Moleküle seltener hergestellt werden. "Wir konnten zeigen, dass Pax6 für den richtigen 'Zuschnitt' der Genprodukte am Ende ihres Produktionswegs sorgt", erklärt Ursula Egbers. Es wird vermutet, dass durch veränderte Zusammensetzung von Tenascin C-Formen die Kommunikation in der Nische zwischen den neuralen Stammzellen und ihren Nachkommen miteinander und untereinander entscheidend beeinflusst werden.

Hoffnung auf neue Ansätze zur Behandlung von Nervenerkrankungen

"Die Arbeit an Stammzellen des Gehirns in unserer Projektgruppe 'neurale Stammzellen' trägt dazu bei, dass ein so komplexes Organ wie das Gehirn etwas besser verstanden werden kann", erklärt Alexander von Holst. Die Untersuchungen an neuralen Stammzellen helfen dabei zu klären, was während der Entwicklung des Nervensystems geschieht. Langfristig, so hoffen die Forscher, kann ein verbessertes Grundlagenverständnis der zellulären und molekularen Mechanismen der Stammzellbiologie zu neuen Ansätzen einer gezielten, stammzellbasierten, klinischen Anwendung bei Erkrankungen des Nervensystems beitragen.

Förderung durch die DFG

Die Arbeiten der Projektgruppe werden von der Deutschen Forschungsgemeinschaft im Rahmen des Schwerpunktprogrammes 1109 "Embryonale und gewebespezifische Stammzellen - Regenerative Zellsysteme für Zell- und Gewebeersatz" und des Graduiertenkollegs 736 "Entwicklung und Plastizität des Nervensystems: Molekulare, synaptische und zelluläre Mechanismen" gefördert.

Titelaufnahme

Alexander von Holst; Ursula Egbers; Alain Prochiantz, Andreas Faissner: Neural Stem/Progenitor Cells Express 20 Tenascin C Isoforms That Are Differentially Regulated by Pax6. In: The Journal of Biological Chemistry, Vol. 282, Issue 12, 9172-9181, March 23, 2007, doi:10.1074/jbc.M608067200

Weitere Informationen

Dr. Alexander von Holst, Lehrstuhl für Zellmorphologie und Molekulare Neurobiologie, RUB, Telefon 0234/32-25812, E-Mail alexander.vonholst@rub.de
Dipl. Biochem. Ursula Egbers, Lehrstuhl für Zellmorphologie und Molekulare Neurobiologie, RUB, Telefon 0234/32-24312, E-Mail ursula.egbers@rub.de

Prof. Dr. Andreas Faissner, Lehrstuhl für Zellmorphologie und Molekulare Neurobiologie, RUB, Telefon 0234/32-28851, E-Mail andreas.faissner@rub.de

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Berichte zu: Molekül Nervensystem Nervenzelle Neurobiologie Pax6 Stammzelle Tenascin

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht „Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz
08.12.2017 | Technische Universität Dresden

nachricht Die Zukunft der grünen Gentechnik
08.12.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie